Skip to main content

Decision Complexity in Dynamic Geometry

  • Conference paper
  • First Online:
Automated Deduction in Geometry (ADG 2000)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2061))

Included in the following conference series:

Abstract

Geometric straight-line programs [5,9] can be used to model geometric constructions and their implicit ambiguities. In this paper we discuss the complexity of deciding whether two instances of the same geometric straight-line program are connected by a continuous path, the Complex Reachability Problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Peter Bürgisser, Michael Clausen, and M. Amin Shokrollahi. Algebraic Complexity Theory, volume 315 of A Series of Comprehensive Studies in Mathematics, chapter 4, pages 103–124. Springer-Verlag, Berlin Heidelberg New York, 1997.

    MATH  Google Scholar 

  2. Mike Deng. The parallel numerical method of proving the constructive geometric theorem. Chinese Science Bulletin, 34:1066–1070, 1989.

    MATH  MathSciNet  Google Scholar 

  3. Hans Freudenthal. The impact of von Staudt’s foundations of geometry. In R. S. Cohen, J. J. Stachel, and M. W. Wartofsky, editors, For Dirk Struik, pages 189–200. D. Reidel, Dordrecht-Holland, 1974. An article emphasizing the foundation-laying contribution (in terms of purely algebraic description) of von Staudt to projective geometry.

    Google Scholar 

  4. Erich Kaltofen. Greatest common divisors of polynomials given by straight-line programs. Journal of the Association for Computing Machinery, 35(1):231–264, January 1988.

    MATH  MathSciNet  Google Scholar 

  5. Ulrich Kortenkamp. Foundations of Dynamic Geometry. Dissertation, ETH Zürich, October 1999.

    Google Scholar 

  6. Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms, chapter 7. Cambridge University Press, Cambridge, 1995.

    MATH  Google Scholar 

  7. Jürgen Richter-Gebert and Ulrich Kortenkamp. Die interaktive Geometriesoftware Cinderella. Book & CD-ROM, HEUREKA-Klett Softwareverlag, Stuttgart, 1999.

    Google Scholar 

  8. Jürgen Richter-Gebert and Ulrich Kortenkamp. The Interactive Geometry Software Cinderella. Book & CD-ROM, Springer-Verlag, Berlin Heidelberg New York, 1999.

    Google Scholar 

  9. Jürgen Richter-Gebert and Ulrich Kortenkamp. Complexity issues in Dynamic Geometry. Submitted to Proceedings of the Smale Fest 2000, Hongkong, 2000.

    Google Scholar 

  10. Jacob T. Schwartz. Probabilistic algorithms for verification of polynomial identities. In Symbolic and Algebraic Computation, EUROSAM’ 79, Int. Symp., Marseille 1979, Lect. Notes Comput. Sci. 72, pages 200–215. Springer-Verlag, Berlin Heidelberg New York, 1979.

    Google Scholar 

  11. Volker Strassen. Berechnung und Programm I. Acta Informatica, 1:320–335, 1972.

    Article  MATH  MathSciNet  Google Scholar 

  12. Wen-tsün Wu. On the decision problem and the mechanization of theorem-proving in elementary geometry. In Contemp. Math., volume 29, pages 213–234. AMS, Providence, 1984.

    Google Scholar 

  13. Wen-tsün Wu. Mechanical Theorem Proving in Geometries. Basic Principles. Transl. from the Chinese by Xiaofan Jin and Dongming Wang. Texts and Monographs in Symbolic Computation. Springer-Verlag, Wien, 1994.

    Google Scholar 

  14. Jingzhong Zhang, Lu Yang, and Mike Deng. The parallel numerical method of mechanical theorem proving. Theoretical Computer Science, 74:253–271, 1990.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kortenkamp, U., Richter-Gebert, J. (2001). Decision Complexity in Dynamic Geometry. In: Richter-Gebert, J., Wang, D. (eds) Automated Deduction in Geometry. ADG 2000. Lecture Notes in Computer Science(), vol 2061. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45410-1_12

Download citation

  • DOI: https://doi.org/10.1007/3-540-45410-1_12

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42598-4

  • Online ISBN: 978-3-540-45410-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics