Skip to main content

Running Time Complexity of Printing an Acyclic Automaton

  • Conference paper
  • First Online:
Implementation and Application of Automata (CIAA 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2759))

Included in the following conference series:

  • 298 Accesses

Abstract

This article estimates the worst-case running time complexity for traversing and printing all successful paths of a normalized trim acyclic automaton. First, we show that the worst-case structure is a festoon with distribution of arcs on states as uniform as possible. Then, we prove that the complexity is maximum when we have a distribution of e (Napier constant) outgoing arcs per state on average, and that it can be exponential in the number of arcs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Berstel, J. 1989. Finite Automata and Rational Languages. An Introduction, in Formal Properties of Finite Automata and Applications. In J.-E. Pin, editor, Lecture Notes in Computer Science, number 386. Verlag, 1989 edition, pages 2–14.

    Google Scholar 

  • Caron, P. and D. Ziadi. 2000. Characterization of Glushkov automata. Theoret. Comput. Sci., 233(1–2):75–90.

    Article  MATH  MathSciNet  Google Scholar 

  • Eilenberg, S. 1974. Automata, Languages, and Machines, volume A. Academic Press, San Diego, CA, USA.

    MATH  Google Scholar 

  • Giammarresi, D., J.-L. Ponty, and D. Wood. 2001. Thompson digraphs: A characterization, in WIA’99. Lecture Notes in Computer Science, 2214:91–100.

    Article  Google Scholar 

  • Hopcroft, J. E, R. Motwani, and J. D Ullman. 2001. Introduction to Automata Theory, Languages and Computation. Low Price Edition. Addison Wesley Longman, Inc, Reading, Mass., USA, 2 edition.

    Google Scholar 

  • Nicaud, C. 2000. Étude du comportement en moyenne des automates finis et des languages rationnels. Thesis, University of Paris 7.

    Google Scholar 

  • Perrin, D. 1990. Finite automata. In J. van Leeuwen, editor, Handbook of Theoretical Computer Science: Volume B: Formal Models and Semantics. Elsevier, Amsterdam, pages 1–57.

    Google Scholar 

  • Yu, S., Q. Zhuang, and K. Salomaa. 1994. The state complexities of some basic operations on regular languages. Theoret. Comput. Sci., 125(2):315–328.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Guingne, F., Kempe, A., Nicart, F. (2003). Running Time Complexity of Printing an Acyclic Automaton. In: Ibarra, O.H., Dang, Z. (eds) Implementation and Application of Automata. CIAA 2003. Lecture Notes in Computer Science, vol 2759. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45089-0_13

Download citation

  • DOI: https://doi.org/10.1007/3-540-45089-0_13

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40561-0

  • Online ISBN: 978-3-540-45089-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics