Skip to main content

Computing Optimal Embeddings for Planar Graphs

  • Conference paper
  • First Online:
Computing and Combinatorics (COCOON 2000)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1858))

Included in the following conference series:

Abstract

We study the problem of optimizing over the set of all combinatorial embeddings of a given planar graph. At IPCO’ 99 we presented a first characterization of the set of all possible embeddings of a given biconnected planar graph G by a system of linear inequalities. This system of linear inequalities can be constructed recursively using SPQR-trees and a new splitting operation. In general, this approach may not be practical in the presence of high degree vertices.

In this paper, we present an improvement of the characterization which allows us to deal efficiently with high degree vertices using a separation procedure. The new characterization exposes the connection with the asymmetric traveling salesman problem thus giving an easy proof that it is NP-hard to optimize arbitrary objective functions over the set of combinatorial embeddings.

Computational experiments on a set of over 11000 benchmark graphs show that we are able to solve the problem for graphs with 100 vertices in less than one second and that the necessary data structures for the optimization can be build in less than 12 seconds.

Partially supported by DFG-Grant Mu 1129/3-1, Forschungsschwerpunkt “E.ziente Algorithmen für diskrete Probleme und ihre Anwendungen”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Di Battista, A. Garg, G. Liotta, R. Tamassia, E. Tassinari, and F. Vargiu. An experimental comparison of four graph drawing algorithms. Comput. Geom. Theory Appl., 7:303–326, 1997.

    MATH  Google Scholar 

  2. G. Di Battista and R. Tamassia. On-line planarity testing. SIAM Journal on Computing, 25(5):956–997, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  3. P. Bertolazzi, G. Di Battista, and W. Didimo. Computing orthogonal drawings with the minimum number of bends. Lecture Notes in Computer Science, 1272:331–344, 1998.

    Google Scholar 

  4. D. Bienstock and C. L. Monma. Optimal enclosing regions in planar graphs. Networks, 19(1):79–94, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  5. D. Bienstock and C. L. Monma. On the complexity of embedding planar graphs to minimize certain distance measures. Algorithmica, 5(1):93–109, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  6. J. Cai. Counting embeddings of planar graphs using DFS trees. SIAM Journal on Discrete Mathematics, 6(3):335–352, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  7. G. Carpaneto, M. Dell’Amico, and P. Toth. Exact solution of large scale asymmetric travelling salesman problems. ACM Transactions on Mathematical Software, 21(4):394–409, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  8. S. Fialko and P. Mutzel. A new approximation algorithm for the planar augmentation problem. In Proceedings of the Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 260–269, San Francisco, California, 1998.

    Google Scholar 

  9. A. Garg and R. Tamassia. On the computational complexity of upward and rectilinear planarity testing. Lecture Notes in Computer Science, 894:286–297, 1995.

    Google Scholar 

  10. M. Jünger, S. Leipert, and P. Mutzel. A note on computing a maximal planar subgraph using PQ-trees. IEEE Transactions on Computer-Aided Design, 17(7):609–612, 1998.

    Article  Google Scholar 

  11. P. Mutzel and R. Weiskircher. Optimizing over all combinatorial embeddings of a planar graph. Technical report, Max-Planck-Institut für Informatik, Saarbrücken, 1998.

    Google Scholar 

  12. P. Mutzel and R. Weiskircher. Optimizing over all combinatorial embeddings of a planar graph. In G. Cornuéjols, R. Burkard, and G. Wöginger, Eds, Proceedings of the Seventh Conference on Integer Programming and Combinatorial Optimization (IPCO), volume 1610 of LNCS, pages 361–376. Springer Verlag, 1999.

    Google Scholar 

  13. R. Tamassia. On embedding a graph in the grid with the minimum number of bends. SIAM Journal on Computing, 16(3):421–444, 1987.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mutzel, P., Weiskircher, R. (2000). Computing Optimal Embeddings for Planar Graphs. In: Du, DZ., Eades, P., Estivill-Castro, V., Lin, X., Sharma, A. (eds) Computing and Combinatorics. COCOON 2000. Lecture Notes in Computer Science, vol 1858. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44968-X_10

Download citation

  • DOI: https://doi.org/10.1007/3-540-44968-X_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67787-1

  • Online ISBN: 978-3-540-44968-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics