Skip to main content

Long-Range Dependence in Heartbeat Dynamics

  • Chapter
  • First Online:
Processes with Long-Range Correlations

Part of the book series: Lecture Notes in Physics ((LNP,volume 621))

Abstract

Physiologic signals are generated b complex self-regulating systems that process inputs with a broad range of characteristics [1,2,3]. Man physiological time series are extremely inhomogeneous and nonstationary, fluctuating in an irregular and complex manner. An important question is whether the “heterogeneous” structure of physiologic time series arises trivially from external and intrinsic perturbations which push the system away from a homeostatic set point. An alternative hypothesis is that the fluctuations are, at least in part, due to the underlying dynamics of the system. The key problem is how to decompose subtle fluctuations (due to intrinsic physiologic control)from other nonstationary trends associated with external stimuli. Till recently, the analysis of the fractal properties of such fluctuations has been restricted to second moment linear characteristics such as the power spectrum and the two-point autocorrelation function. These analyses reveal that the fractal behavior of healthy, free-running physiological systems is often characterized by 1/f-like scaling of the power spectra over a wide range of time scales [4,5,6 7,8]. A signal which exhibits such power-law long-range dependence and is homogeneous (i.e. different parts of the signal have different statistical properties) is called a monofractal signal. Man physiologic time series, however, are inhomogeneous with different parts of the signal characterized by different statistical properties. In addition, there is evidence that physiologic dynamics exhibits nonlinear properties [9,10,11 12,13,14,15]. Such features are often associated with multifractal behavior, i.e., presence of long-range power-law dependence in the higher moments which is a nonlinear function of the scaling of the second moment [16]. Up to now, robust demonstration of multifractalit for nonstationary time series has been hampered by problems related to a drastic bias in the estimate of the singularity spectrum due to diverging negative moments. Moreover, the classical approaches based on the box-counting technique and structure function formalism fail when a fractal function is composed of a multifractal singular part embedded in regular polynomial behavior [17]. By means of a wavelet-based multifractal formalism, we show that health human heartbeat dynamics exhibits even higher complexity (than previously expected from the finding of monofractal 1/f scaling) which is characterized by a broad multifractal spectrum [18].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. F. Shlesinger: Ann. NY Acad. Sci. 504, 214 (1987)

    Article  ADS  Google Scholar 

  2. J.B. Bassingthwaighte, L.S. Liebovitch, and B.J. West: Fractal Physiology (Oxford Univ. Press, New York 1994)

    Google Scholar 

  3. M. Malik and A.J. Camm, eds.: Heart Rate Variability (Futura, Armonk NY 1995).

    Google Scholar 

  4. M. Kobayashi and T. Musha: IEEE Trans. Biomed. Eng. 29, 456 (1982)

    Article  Google Scholar 

  5. J.P. Saul, P. Albrecht, D. Berger, and R.J. Cohen: Computers in Cardiology (IEEE Computer Society Press, Washington DC), 419 (1987)

    Google Scholar 

  6. C.-K. Peng, J. Mietus, J.M. Hausdor., S. Havlin, H. Eugene Stanley, and A.L. Goldberger: Phys. Rev. Lett. 70, 1343 (1993)

    Article  ADS  Google Scholar 

  7. J.M. Hausdor., P.L. Purdon, C.-K. Peng, Z. Ladin, J. Y. Wei, and A.L. Goldberger: J. Appl. Physiol. 80, 1448 (1996)

    Google Scholar 

  8. L.S. Liebovitch: Adv. Chem. Ser. 235, 357 (1994); S.B. Lowen, L.S. Liebovitch, J.A. White: Phys. Rev. E 59, 5970(1999)

    Article  Google Scholar 

  9. J. Lefebvre, D.A. Goodings, M.V. Kamath, and E.L. Fallen: Chaos 3, 267 (1993)

    Article  ADS  Google Scholar 

  10. Y. Yamamoto, R.L. Hughson, J.R. Sutton, C.S. Houston, A. Cymerman, E.L. Fallen, and M.V. Kamath: Biol. Cybern. 69, 205 (1993)

    Article  Google Scholar 

  11. J.K. Kanters, N.H. Holstein-Rathlou and E. Agner: J. Cardiovasc. Electrophysiol. 5, 128 (1994)

    Article  Google Scholar 

  12. J. Kurths, A. Voss, P. Saparin, A. Witt, H.J. Kleiner, and N. Wessel: Chaos 5, 88 (1995)

    Article  ADS  Google Scholar 

  13. P. Ch. Ivanov, M. G. Rosenblum, C.-K. Peng, J. Mietus, S. Havlin, H. E. Stanley and A. L. Goldberger: Nature 383, 323 (1996)

    Article  ADS  Google Scholar 

  14. G. Sugihara, W. Allan, D. Sobel and K. D. Allan: Proc. Natl. Acad. Sci. USA 93, 2608 (1996)

    Article  MATH  ADS  Google Scholar 

  15. C-S. Poon, and C.K. Merrill: “Decrease of Cardiac Chaos in Congestive Heart Failure”, Nature 389, 492 (1997).

    Article  ADS  Google Scholar 

  16. J. Feder: Fractals (Plenum, NY 1988)

    MATH  Google Scholar 

  17. J. F. Muzy, E. Bacry, and A. Arneodo: Phys. Rev. E 47, 875 (1993)

    Article  ADS  Google Scholar 

  18. P. Ch. Ivanov, L. A. N. Amaral, A. L. Goldberger, S. Havlin, M. G. Rosenblum, Z. Struzik, and H. E. Stanley: Nature 399 461 (1999)

    Article  ADS  Google Scholar 

  19. M. Mackey and L. Glass: Science 197, 287 (1977)

    Article  ADS  Google Scholar 

  20. M.M. Wolf, G.A. Varigos, D. Hunt, and J.G. Sloman: Med. J. Australia 2, 52 (1978)

    Google Scholar 

  21. R.I. Kitney and O. Rompelman: The Study of Heart-Rate Variability (Oxford Univ. Press, London 1980)

    Google Scholar 

  22. S. Akselrod, D. Gordon, F. A. Ubel, D. C. Shannon, A. C. Barger, and R. J. Cohen: Science 213, 220 (1981)

    Article  ADS  Google Scholar 

  23. L. Glass, P. Hunter, and A. McCulloch, eds.: Theory of Heart (Springer Verlag, New York 1991)

    Google Scholar 

  24. C.-K. Peng, S. Havlin, H. E. Stanley, and A. L. Goldberger: in Proc. NATO dynamical disease conference, edited by Glass L. Chaos 5, 82 (1995)

    Google Scholar 

  25. P.Ch. Ivanov, M.G. Rosenblum, C.-K. Peng, J. Mietus, S. Havlin, H.E. Stanley, and A.L. Goldberger: Physica A 249, 587 (1998).

    Article  Google Scholar 

  26. Y. Ashkenazy, P.Ch. Ivanov, S. Havlin, C.-K. Peng, A.L. Goldberger, and H.E. Stanley: Phys. Rev. Lett. 86, 1900 (2001)

    Article  ADS  Google Scholar 

  27. D. Panter: Modulation, noise and spectral analysis (McGraw-Hill, New York 1965)

    Google Scholar 

  28. R. L. Stratonovich: Topics in the theory of random noise, vol. I (Gordon and Breach, New York 1981)

    Google Scholar 

  29. R.I. Kitney, D. Linkens, A.C. Selman, and A.A. McDonald: Automedica 4, 141 (1982)

    Google Scholar 

  30. A.L. Goldberger: Lancet 347, 1312 (1996)

    Article  Google Scholar 

  31. P.Ch. Ivanov, L.A.N. Amaral, A.L. Goldberger, S. Havlin, M.G. Rosenblum, H.E. Stanley, Z. Struzik: Chaos 11, 641 (2001)

    Article  MATH  ADS  Google Scholar 

  32. S. Havlin et al.: Phys. Rev. Lett. 61, 1438 (1988)

    Article  ADS  Google Scholar 

  33. M.F. Shlesinger and B.J. West: Random Fluctuations and Pattern Growth: Experiments and Models (Kluwer Academic Publishers, Boston 1988)

    Google Scholar 

  34. M. N. Levy: Circ. Res. 29, 437 (1971)

    Google Scholar 

  35. P. Ch. Ivanov, L.A.N. Amaral, A.L. Goldberger, and H.E. Stanley: Europhys. Lett. 43, 363 (1998)

    Article  ADS  Google Scholar 

  36. P. Bernaola-Galvan, P.Ch. Ivanov, L.A.N. Amaral, and H.E. Stanley: Phys. Rev. Lett. 87, 168105 (2001)

    Article  ADS  Google Scholar 

  37. P. Bernaola-Galvan, I. Grosse, P. Carpena, J.L. Oliver, R. Roman-Roldan, H.E. Stanley: Phys. Rev. Lett. 85, 1342 (2000)

    Article  ADS  Google Scholar 

  38. R. M. Berne and M. N. Levy: Cardiovascular Physiology 6th ed. (C.V. Mosby, St. Louis 1996)

    Google Scholar 

  39. C.-K. Peng, S. V. Buldyrev, S. Havlin, M. Simons, H. E. Stanley, and A. L. Goldberger: Phys. Rev. E 49, 1691 (1994)

    Article  ADS  Google Scholar 

  40. S. V. Buldyrev, A. L. Goldberger, S. Havlin, R. N. Mantegna, M. E. Matsa, C.-K. Peng, M. Simons, and H. E. Stanley: Phys. Rev. E 51, 5084 (1995)

    Article  ADS  Google Scholar 

  41. S. V. Buldyrev, A. L. Goldberger, S. Havlin, C.-K. Peng, H. E. Stanley, and M. Simons: Biophys. J. 65, 2673 (1993)

    Article  Google Scholar 

  42. S. M. Ossadnik, S. V. Buldyrev, A. L. Goldberger, S. Havlin, R. N. Mantegna, C.-K. Peng, M. Simons, and H. E. Stanley: Biophys. J. 67, 64 (1994)

    Article  ADS  Google Scholar 

  43. M. S. Taqqu, V. Teverovksy, and W. Willinger: Fractals 3, 185 (1996)

    Google Scholar 

  44. J.W. Kantelhardt, E. Koscielny-Bunde, H.H.A. Rego, S. Havlin, and A. Bunde: Physica A 294, 441 (2001)

    Article  ADS  Google Scholar 

  45. K. Hu, P.Ch. Ivanov, C. Zhi, P. Carpena, and H.E. Stanley: Phys. Rev. E 64, 011114 (2001)

    Google Scholar 

  46. Z. Chen, P.Ch. Ivanov, K. Hu, and H.E. Stanley: Phys. Rev. E 65, 041107 (2002)

    Google Scholar 

  47. H.V. Huikuri, K.M. Kessler, E. Terracall, A. Castellanos, M.K. Linnaluoto, R.J. Myerburg: Am. J. Cardiol. 65, 391 (1990)

    Article  Google Scholar 

  48. H. Moelgaard, K.E. Soerensen, and P. Bjerregaard: Am. J. Cardiol. 68, 777 (1991)

    Article  Google Scholar 

  49. P.Ch. Ivanov M. G. Rosenblum, C.-K. Peng, S. Havlin, H.E. Stanley, and A.L. Goldberger, “Wavelets in Medicine and Physiology”. In Wavelets in Physics, ed. H. van der Berg (Cambridge University Press, Cambridge 1998)

    Google Scholar 

  50. P.Ch. Ivanov, A. Bunde, L.A.N. Amaral, S. Havlin, J. Fritsch-Yelle, R.M. Baevsky, H.E. Stanley and A.L. Goldberger: Europhys. Lett. 48, 594 (1999)

    Article  ADS  Google Scholar 

  51. A.L. Goldberger, M.W. Bungo, R.M. Baevsky, B.S. Bennett, D.R. Rigney, J.E. Mietus, G.A. Nikulina, and J.B. Charles: Am. Heart J. 128, 202 (1994)

    Article  Google Scholar 

  52. A. Bunde, S. Havlin, J.W. Kantelhardt, T. Penzel, J.H. Peter, K. Voigt, Phys. Rev. Lett. 85, 3736 (2000)

    Article  ADS  Google Scholar 

  53. T. Vicsek: Fractal Growth Phenomenon 2nd edn (World Scientific, Singapore 1993)

    Google Scholar 

  54. H. Takayasu: Fractals in the Physical Sciences (Manchester Univ. Press, Manchester, UK, 1997)

    Google Scholar 

  55. R.M. Berne and M.N. Levy: Cardiovascular Physiology, 7th edn (Mosby, St. Louis 1996)

    Google Scholar 

  56. Heartbeat increment series were investigated by A. Babloyantz and P. Maurer, Phys. Lett. A 221, 43 (1996) and P. Maurer, H.-D. Wang, and A. Babloyantz, Phys. Rev. E 56, 1188 (1997). These studies differ from ours because we investigate, quantitatively, normal heartbeats by evaluating the scaling properties of the magnitude and sign series. In addition, our calculations are based on window scales larger than 6 and up to one thousand heartbeats.

    Article  ADS  Google Scholar 

  57. P.F. Panter, Modulation, Noise, and Spectral Analysis Applied to Information Transmission (New York, New York 1965). We also applied a test for nonlinearity using the phase randomization procedure described in J. Theiler, S. Eubank, A. Longtin, B. Galdrikian, and D.J. Farmer, Physica D 58, 77 (1992), and find that the magnitude scaling exponent drops to 0.5 while the sign scaling exponent remains unchanged.

    Google Scholar 

  58. L.A.N. Amaral, P.Ch. Ivanov, N. Aoyagi, I. Hidaka, S. Tomono, A.L. Goldberger, H.E. Stanley, and Y. Yamamoto. Physical Review Letters 86, 6026 (2001)

    Article  ADS  Google Scholar 

  59. H. Moelgaard, K. E. Soerensen, and P. Bjerregaard, Am. J. Cardiology 68, 77 (1991)

    Google Scholar 

  60. H. V. Huikuri, K. M. Kessler, E. Terracall, A. Castellanos, M. K. Linnaluoto, and R. J. Myerburg, Am. J. Cardiology 65, 391 (1990)

    Article  Google Scholar 

  61. M. A. Carskadon and W. C. Dement: In Principles and Practice of Sleep Medicine, edited by M. H. Kryger, T. Roth, and W. C. Dement (W. B. Saunders, Philadelphia 1994), pp. 16–25

    Google Scholar 

  62. A. Rechtschaffen and A. Kales, A Manual of Standardized Terminology, Techniques, and Scoring System for Sleep Stages of Human Subjects (U.S. Government Printing Office, Washington 1968)

    Google Scholar 

  63. J.W. Kantelhardt, Y. Ashkenazy, P.Ch. Ivanov, A. Bunde, S. Havlin, T. Penzel, J.-H. Peter, and H.E. Stanley: Physical Review E 65, 051908 (2002)

    Google Scholar 

  64. F. Mallamace and H. E. Stanley: Eds. Physics of Complex Systems: Proc. Enrico Fermi School on Physics, Course CXXXIV (IOS Press, Amsterdam 1997)

    Google Scholar 

  65. P. Meakin: Fractals, Scaling and Growth Far from Equilibrium (Cambridge University Press, Cambridge 1997)

    Google Scholar 

  66. H.E. Stanley: Nature 378, 554 (1995)

    Article  ADS  Google Scholar 

  67. A. Bunde and S. Havlin: Fractals in science (Springer-Verlag, Berlin 1994)

    MATH  Google Scholar 

  68. A. Bunde and S. Havlin: Eds. Fractals and Disordered Systems, 2nd Edition (Springer-Verlag, Berlin 1996)

    MATH  Google Scholar 

  69. A.-L. Barabási and H. E. Stanley: Fractal Concepts in Surface Growth (Cambridge University Press, Cambridge 1995)

    Book  MATH  Google Scholar 

  70. H.E. Hurst: Trans. Am. Soc. Civ. Eng. 116, 770 (1951)

    Google Scholar 

  71. T.G. Dewey: Fractals in Molecular Biophysics (Oxford University Press, Oxford 1997)

    MATH  Google Scholar 

  72. Z. R. Struzik: Fractals, 8, 163 (2000)

    Article  Google Scholar 

  73. Z. R. Struzik: Fractals, 9, 77 (2001)

    Article  Google Scholar 

  74. T. Vicsek and A.L. Barabási: J. Phys. A: Math. Gen., 24, L845 (1991)

    Article  ADS  Google Scholar 

  75. A.-L. Barabasi and H.E. Stanley: Fractal Concepts in Surface Growth (Cambridge University Press, Cambridge 1995), Chapter 24

    Book  MATH  Google Scholar 

  76. I. Daubechies: Ten Lectures on Wavelets (S.I.A.M., Philadelphia 1992)

    MATH  Google Scholar 

  77. J.F. Muzy, E. Bacry and A. Arneodo: Int. J. Bifurc. Chaos. 4, 245 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  78. L.A.N. Amaral, P.Ch. Ivanov, N. Aoyagi, I. Hidaka, S. Tomono, A.L. Goldberger, H.E. Stanley, and Y. Yamamoto: Phys. Rev. Lett. 86, 6026 (2001)

    Article  ADS  Google Scholar 

  79. L. A. N. Amaral, A. L. Goldberger, P. Ch. Ivanov, and H. E. Stanley: Phys. Rev. Lett. 81, 2388 (1998)

    Article  ADS  Google Scholar 

  80. C. Meneveau and K. R. Sreenivasan: Phys. Rev. Lett. 59, 1424 (1987)

    Article  ADS  Google Scholar 

  81. H.E. Stanley and P. Meakin: Nature 335, 405 (1988)

    Article  ADS  Google Scholar 

  82. U. Frisch: Turbulence (Cambridge University Press, Cambridge UK 1995)

    MATH  Google Scholar 

  83. L. Glass and C.P. Malta: J. Theor. Biol. 145, 217 (1990)

    Article  MathSciNet  Google Scholar 

  84. H. Seidel and H. Herzel: Physica D, 115, 145 (1998)

    Article  MATH  ADS  Google Scholar 

  85. D.C. Lin and R.L. Hughson: Phys. Rev. Lett. 86, 1650 (2001)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ivanov, P.C. (2003). Long-Range Dependence in Heartbeat Dynamics. In: Rangarajan, G., Ding, M. (eds) Processes with Long-Range Correlations. Lecture Notes in Physics, vol 621. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44832-2_19

Download citation

  • DOI: https://doi.org/10.1007/3-540-44832-2_19

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40129-2

  • Online ISBN: 978-3-540-44832-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics