Skip to main content

θ-Subsumption in a Constraint Satisfaction Perspective

  • Conference paper
  • First Online:
Inductive Logic Programming (ILP 2001)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2157))

Included in the following conference series:

Abstract

The covering test intensively used in Inductive Logic Programming, i.e. θ-subsumption, is formally equivalent to a Constraint Satisfaction problem (CSP). This paper presents a general reformulation of θ-subsumption into a binary CSP, and a new θ-subsumption algorithm, termed Django, which combines some main trend CSP heuristics and other heuristics specifically designed for θ-subsumption.

Django is evaluated after the CSP standards, shifting from a worst-case complexity perspective to a statistical framework, centered on the notion of Phase Transition (PT). In the PT region lie the hardest on average CSP instances; and this region has been shown of utmost relevance to ILP [4]. Experiments on artificial θ-subsumption problems designed to illustrate the phase transition phenomenon, show that Django is faster by several orders of magnitude than previous θ-subsumption algorithms, within and outside the PT region.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Bessière and J.-C. R/’egin. Mac and combined heuristics: Two reasons to forsake FC (and CBJ ?) on hard problems. In 2nd Int. Conf. on Principles and Practice of Constraint Programming, pages 61–75, 1996.

    Google Scholar 

  2. R. Dechter and J. Pearl. Tree clustering for constraint networks. Artificial Intelligence 38:353–366, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  3. A. Giordana and L. Saitta. Phase transitions in relational learning. Machine Learning, 2:217–251, 2000.

    Article  Google Scholar 

  4. A. Giordana, L. Saitta, M. Sebag, and M. Botta. Analyzing relational learning in the phase transition framework. In P. Langley, editor, 17th Int. Conf. on Machine Learning, pages 311–318. Morgan Kaufmann, 2000.

    Google Scholar 

  5. G. Gottlob and A. Leitsch. On the efficiency of subsumption algorithms. Journal of the Association for Computing Machinery, 32(2):280–295, 1985.

    MATH  MathSciNet  Google Scholar 

  6. M. Gyssens, P. G. Jeavons, and D. A. Cohen. Decomposing constraint satisfaction problems using database techniques. Artificial Intelligence, 66:57–89, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  7. T. Hogg, B. Huberman, and C. Williams. Phase transitions and the search problem. Artificial Intelligence, 81:1–15, 1996.

    Article  MathSciNet  Google Scholar 

  8. J.-U. Kietz and M. Lübbe. An efficient subsumption algorithm for inductive logic programming. In W. Cohen and H. Hirsh, editors, 11th Int. Conf. on Machine Leaning. Morgan Kaufmann, 1994.

    Google Scholar 

  9. A. K. Mackworth. Consistency in networks of relations. Artificial Intelligence, 8:99–118, 1977.

    Article  MATH  Google Scholar 

  10. S. Muggleton and L. De Raedt. Inductive logic programming: Theory and methods. Journal of Logic Programming, 19:629–679, 1994.

    Article  MathSciNet  Google Scholar 

  11. C. Nédellec, C. Rouveirol, H. Adé, F. Bergadano, and B. Tausend. Declarative bias in ILP. In L. de Raedt, editor, Advances in ILP, pages 82–103. IOS Press, 1996.

    Google Scholar 

  12. S. Nienhuys-Cheng and R. de Wolf. Foundations of Inductive Logic Programming. Springer Verlag, 1997.

    Google Scholar 

  13. G. D. Plotkin. A note on inductive generalization. In B. Meltzer and D. Michie, editors, Machine Intelligence, volume 5, pages 153–163, 1970.

    Google Scholar 

  14. P. Prosser. Hybrid algorithms for the constraint satisfaction problem. Computational Intelligence, 9:268–299, 1993.

    Article  Google Scholar 

  15. J.R. Quinlan. Learning logical definitions from relations. Machine Learning, 5(3):239–266, 1990.

    Google Scholar 

  16. J. Robinson. A machine-oriented logic based on the resolution principle. Journal of the ACM, 12(1):23–41, 1965.

    Article  MATH  Google Scholar 

  17. L. Saitta and J.-D. Zucker. Semantic abstraction for concept representation and learning. In AAAI, editor, Symposium on Abstraction, Reformulation and Approximation (SARA98), 1998.

    Google Scholar 

  18. T. Scheffer, R. Herbrich, and F. Wysotzki. Efficient θ-subsumption based on graph algorithms. In S. Muggleton, editor, Proceedings Int. Workshop on Inductive Logic Programming. Springer-Verlag, 1997.

    Google Scholar 

  19. M. Sebag and C. Rouveirol. Resource-bounded relational reasoning: Induction and deduction through stochastic matching. Machine Learning, 38:41–62, 2000.

    Article  MATH  Google Scholar 

  20. A. Srinivasan, S.H. Muggleton, M.J.E. Sternberg, and R.D. King. Theories for mutagenicity: a study in first order and feature-based induction. Artificial Intelligence, 85:277–299, 1996.

    Article  Google Scholar 

  21. E. Tsang. Foundations of Constraint Satisfaction. Academic Press, 1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Maloberti, J., Sebag, M. (2001). θ-Subsumption in a Constraint Satisfaction Perspective. In: Rouveirol, C., Sebag, M. (eds) Inductive Logic Programming. ILP 2001. Lecture Notes in Computer Science(), vol 2157. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44797-0_14

Download citation

  • DOI: https://doi.org/10.1007/3-540-44797-0_14

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42538-0

  • Online ISBN: 978-3-540-44797-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics