Skip to main content

Topo-distance: Measuring the Difference between Spatial Patterns

  • Conference paper
  • First Online:
Logics in Artificial Intelligence (JELIA 2000)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 1919))

Included in the following conference series:

Abstract

A framework to deal with spatial patterns at the qualitative level of mereotopology is proposed. The main contribution is to provide formal tools for issues of model equivalence and model similarity. The framework uses a multi-modal language S4u interpreted on topological spaces (rather than Kripke semantics) to describe the spatial patterns. Model theoretic notions such as topological bisimulations and topological model comparison games are introduced to define a distance on the space of all topological models for the language S4u. In the process, a new take on mereotopology is given, prompting for a comparison with prominent systems, such as RCC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Aiello. IRIS. An Image Retrieval System based on Spatial Relationship. Manuscript, 2000.

    Google Scholar 

  2. M. Aiello and J. van Bentham. Logical Patterns in Space. In D. Barker-Plummer, D. Beaver, J. van Benthem, and P. Scotto di Luzio, editors, First CSLI Workshop on Visual Reasoning, Stanford, 2000. CSLI. To appear.

    Google Scholar 

  3. M. Aiello, J. van Benthem, and G. Bezhanishvili. Reasoning about Space: the Modal Way. Manuscirpt, 2000.

    Google Scholar 

  4. N. Asher and L. Vieu. Toward a Geometry of Common Sense: a semantics and acomplete axiomatization of mereotopology. In IJCAI95, pages 846–852. International Joint Conference on Artificial Itelligence, 1995.

    Google Scholar 

  5. Ph. Balbiani. The modal multilogic of geometry. Journal of Applied Non-Classical Logics, 8:259–281, 1998.

    MATH  MathSciNet  Google Scholar 

  6. Ph. Balbiani, L. Fariñas del Cerro, T. Tinchev, and D. Vakarelov. Modal logics forincidence geometries. Journal of Logic and Computation, 7:59–78, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  7. B. Bennett. Modal Logics for Qualitative Spatial Reasoning. Bulletin of the IGPL, 3:1–22, 1995.

    Google Scholar 

  8. J. van Benthem. Modal Correspondence Theory. PhD thesis, University of Amsterdam, 1976.

    Google Scholar 

  9. R. Casati and A. Varzi. Parts and Places. MIT Press, 1999.

    Google Scholar 

  10. A. Cohn and A. Varzi. Connection Relations in Mereotopology. In H. Prade, editor, Proc. 13th European Conf. on AI (ECAI98), pages 150–154. John Wiley, 1998.

    Google Scholar 

  11. K. Doets. Basic Model Theory. CSLI Publications, Stanford, 1996.

    MATH  Google Scholar 

  12. V. Goranko and S. Pasy. Using the universal modality: gains and questions. Journal of Logic and Computation, 2:5–30, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  13. D. Park. Concurrency and Automata on Infinite Sequences. In Proceedings of the 5th GI Conference, pages 167–183, Berlin, 1981. Springer Verlag.

    Google Scholar 

  14. D. Randell, Z. Cui, and A Cohn. A Spatial Logic Based on Regions and Connection. In Proceedings of the Third International Conference on Principles of Knowledge Representation and Reasoning (KR’92), pages 165–176. San Mateo, 1992.

    Google Scholar 

  15. J. Renz and B. Nebel. On the Complexity of Qualitative Spatial Reasoning: A Maximal Tractable Fragment of the Region Connection Calculus. Artificial Intelligence, 108(1-2):69–123, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  16. V. Shehtman. “Everywhere” and “Here”. Journal of Applied Non-Classical Logics, 9(2-3):369–379, 1999.

    MATH  MathSciNet  Google Scholar 

  17. A. Tarski. Der Aussagenkalkül und die Topologie. Fund. Math., 31:103–134, 1938.

    MATH  Google Scholar 

  18. A. Tarski. What is Elementary Geometry? In L. Henkin and P. Suppes and A. Tarski, editor, The Axiomatic Method, with Special Reference to Geometry ad Physics, pages 16–29. North-Holland, 1959.

    Google Scholar 

  19. Y. Venema. Points, Lines and Diamonds: a Two-Sorted Modal Logic for Projective Planes. Journal of Logic and Computation, 9(5):601–621, 1999.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Aiello, M. (2000). Topo-distance: Measuring the Difference between Spatial Patterns. In: Ojeda-Aciego, M., de Guzmán, I.P., Brewka, G., Moniz Pereira, L. (eds) Logics in Artificial Intelligence. JELIA 2000. Lecture Notes in Computer Science(), vol 1919. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-40006-0_6

Download citation

  • DOI: https://doi.org/10.1007/3-540-40006-0_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41131-4

  • Online ISBN: 978-3-540-40006-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics