Skip to main content

Algorithmische Universalität und ihre Robustheit

oder die einfachsten Maschinen, mit denen es geht

  • Chapter
Algorithmik
  • 2099 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 34.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 49.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Kapitel 9

  1. A. Turing, „On Computable Numbers with an Application to the Entscheidungsproblem,“ Proc. London Math. Soc. 42 (1936), S. 230–65. Korrekturen erschienen in: ibid., 43 (1937), S. 544–6.

    MATH  Google Scholar 

  2. A. Church, „An Unsolvable Problem of Elementary Number Theory,“ Amer. J. Math. 58 (1936), S. 345–63.

    Article  MATH  MathSciNet  Google Scholar 

  3. S. C. Kleene, „Origins of Recursive Function Theory,“ Ann. Hist. Comput. 3 (1981), S. 52–67.

    MATH  MathSciNet  Google Scholar 

  4. M. Davis, „Why Gödel Didn’t Have Church’s Thesis,“ Inf. and Cont. 54 (1982), S. 3–24.

    Article  MATH  Google Scholar 

  5. J. B. Rosser, „Highlights of the History of the Lambda-Calculus,“ Ann. Hist. Comput. 6 (1984), S. 337–49.

    MATH  MathSciNet  Google Scholar 

  6. Y. Gurevich, „Logic and the Challenge of Computer Science,“ in Current Trends in Theoretical Computer Science, E. Börger, Hrsg., Computer Science Press, 1988.

    Google Scholar 

  7. A. K. Chandra und D. Harel, „Computable Queries for Relational Data Bases,“ J. Comput. Syst. Sci. 21 (1980), S. 156–78.

    Article  MATH  MathSciNet  Google Scholar 

  8. S. C. Kleene, „A Theory of Positive Integers in Formal Logic,“ Amer. J. Math. 57 (1935), S. 153–73, 219–44.

    Article  MATH  MathSciNet  Google Scholar 

  9. H. P. Barendregt, The Lambda Calculus: Its Syntax and Semantics, 2. Aufiage, North Holland, 1984.

    Google Scholar 

  10. E. L. Post, „Formal Reductions of the General Combinatorial Decision Problem,“ Amer. J. Math. 65 (1943). S. 197–215.

    Article  MATH  MathSciNet  Google Scholar 

  11. S. C. Kleene, „General Recursive Functions of Natural Numbers,“ Math. Ann. 112 (1936), S. 727–42.

    Article  MATH  MathSciNet  Google Scholar 

  12. S. C. Kleene, „λ-Definability and Recursiveness,“ Duke Math. J. 2 (1936), S. 340–53.

    Article  MATH  MathSciNet  Google Scholar 

  13. E. L. Post, „Finite Combinatory Processes-Formulation 1,“ J.Symb. Logic 1 (1936), S. 103–5.

    Article  MATH  Google Scholar 

  14. A. M. Turing, „Computability and λ-Defmability,“ J. Symb. Logic 2 (1937), S. 153–63.

    Article  MATH  Google Scholar 

  15. H. Rogers, Theory of Recursive Functions and Effective Computability, McGraw-Hill, 1967 (Reprint von MIT Press, 1987).

    Google Scholar 

  16. J. E. Hopcroft und J. D. Ullman, Introduction to Automata Theory, Languages and Computation, Addison-Wesley, 1979.

    Google Scholar 

  17. J. E. Hopcroft und J. D. Ullman, Einführung in die Automatentheorie, formale Sprachen und Komplexitätstheorie, Pearson Studium, 2002.

    Google Scholar 

  18. M. L. Minsky, Computation: Finite and Infinite Machines, Prentice-Hall, 1967.

    Google Scholar 

  19. M. L. Minsky, „Recursive Unsolvability of Post’s Problem of ‘Tag’ and Other Topics in the Theory of Turing Machines,“ Annals Math. 74 (1961), S. 437–55.

    Article  MATH  MathSciNet  Google Scholar 

  20. P. C. Fischer, „Turing Machines with Restricted Memory Access,“ Inf. and Cont. 9 (1966), S. 364–79.

    Article  MATH  Google Scholar 

  21. A. R. Meyer und R. Ritchie, „The Complexity of Loop Programs,“ Proc. ACM National Conf., ACM Press, S. 465–9, 1967.

    Google Scholar 

  22. J. E. Hopcroft, „Turing Machines,“ Scientific American 250:5 (1984), S. 70–80.

    Article  Google Scholar 

  23. P. van Emde Boas, „Machine Models and Simulations,“ in Handbook of Theoretical Computer Science, Vol. A, J. van Leeuwen, Hrsg., Elsevier und MIT Press, 1990, S. 1–66.

    Google Scholar 

  24. J. Hartmanis und R. E. Stearns, „On the Computational Complexity of Algorithms,“ Trans. Amer. Math. Soc. 117 (1965), S. 285–306.

    Article  MATH  MathSciNet  Google Scholar 

  25. S. A. Cook, „The Complexity of Theorem Proving Procedures,“ Proc. 3rd ACM Symp. on Theory of Computing, ACM Press, S. 151–8, 1971.

    Google Scholar 

  26. H. Wang, „Proving Theorems by Pattern Recognition,“ Bell Syst. Tech. J. 40 (1961), S. 1–42.

    Google Scholar 

  27. W. S. McCulloch und W. Pitts, „A Logical Calculus of the Ideas Immanent in Nervous Activity,“ Bull. Math. Biophysics 5 (1943), S. 115–33.

    Article  MATH  MathSciNet  Google Scholar 

  28. S. C. Kleene, „Representation of Events in Nerve Nets and Finite Automata,“ in Automata Studies, C. E. Shannon und J. McCarthy, Hrsg., Ann. Math. Studies 34 (1956), S. 3–41. (Frühere Version: RAND Research Memorandum RM-704,1951.)

    Google Scholar 

  29. M. O. Rabin und D. Scott, „Finite Automata and their Decision Problems,“ IBM J. Res. 3 (1959), S. 115–25.

    MathSciNet  Google Scholar 

  30. Y. Bar-Hillel, M. Perles und E. Shamir, „On Formal Properties of Simple Phrase Structure Grammars,“ Zeit. Phonetik, Sprachwiss. Kommunikationsforsch. 14 (1961), S. 143–72.

    MATH  MathSciNet  Google Scholar 

  31. A. G. Oettinger, „Automatic Syntactic Analysis and the Pushdown Store,“ Proc. Symp. in Applied Math. 12, Amer. Math. Soc, S. 104–29, 1961.

    Google Scholar 

  32. N. Chomsky, „Three Models for the Description of Language,“ IRE Trans. Inf. Theory 2 (1956), S. 113–24.

    Article  MATH  Google Scholar 

  33. N. Chomsky, „On Certain Formal Properties of Grammars,“ Inf. and Cont. 2 (1959), S. 137–67.

    Article  MATH  MathSciNet  Google Scholar 

  34. G. Sénizergues, „The Equivalence Problem for Deterministic Pushdown Automata is Decidable,“ Proc. Int. Colloq. on Automata, Lang, and Prog., Lecture Notes in Computer Science, Vol. 1256, Springer-Verlag, S. 671–81, 1997.

    Google Scholar 

  35. C. Sterling, „An Introduction to Decidability of DPDA Equivalence,“ Proc. 21st Conf. on Foundations of Software Technology and Theoretical Computer Science, Lecture Notes in Computer Science, Vol. 2245, Springer-Verlag, S. 42–56, 2001.

    Google Scholar 

  36. C. Sterling, „Deciding DPDA Equivalence is Primitive Recursive,“ Proc. Int. Colloq. on Automata, Lang, and Prog., Lecture Notes in Computer Science, Vol. 2380, Springer-Verlag, S. 821–32, 2002.

    Google Scholar 

  37. S. A. Greibach, „Formal Languages: Origins and Directions,“ Ann. Hist. Comput. 3 (1981), S. 14–41.

    Article  MATH  MathSciNet  Google Scholar 

  38. S. Ginsburg, Algebraic and Automata-Theoretic Properties of Formal Languages, North Holland, 1975.

    Google Scholar 

  39. M. A. Harrison, Introduction to Formal Language Theory, Addison-Wesley, 1978.

    Google Scholar 

  40. A. Salomaa, Jewels of Formal Language Theory, Computer Science Press, 1981.

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2006). Algorithmische Universalität und ihre Robustheit. In: Algorithmik. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-37437-X_9

Download citation

Publish with us

Policies and ethics