Skip to main content

Geometric Structure and Randomness in Texture Analysis and Synthesis

  • Conference paper
  • First Online:
Geometry, Morphology, and Computational Imaging

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2616))

  • 329 Accesses

Abstract

Gibbs random field models describe image textures in terms of geometric structure and energy of pixel interactions. The interaction means statistical interdependence of signals, the structure is given by characteristic pixel neighbourhoods, and the energy depends on signal co- occurrences over the neighbourhoods. In translation invariant textures all the neighbourhoods have the same relative geometry. The interaction structure of such a texture is reflected in a model-based interaction map (MBIM) giving spatial distribution of the interaction energies over a large neighbourhood. We show that due to scale / orientation robustness, the MBIM allows to partition a given training sample into tiles acting as structural elements, or texels. Large-size textured images can be synthesised by replicating the training texels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barndorff-Nielsen, O.: Information and Exponential Families in Statistical Theory. John Wiley & Sons: Chichester (1978).

    MATH  Google Scholar 

  2. Brodatz, P.: Textures: A Photographic Album for Artists and Designers. Dover Publications: New York (1966).

    Google Scholar 

  3. Campbell, L. L.: Equivalence of Gauss’s principle and minimum discrimination information estimation of probabilities. Annals of Mathematical Statistics 41:3 (1970) 1011–1015.

    Article  MATH  MathSciNet  Google Scholar 

  4. De Bonet, J. S.: Multiresolution sampling procedure for analysis and synthesis of texture images. In: Proc. ACM Conf. Computer Graphics SIGGRAPH’97 (1997) 361–368.

    Google Scholar 

  5. Efros, A. A., Leung, T. K.: Texture synthesis by non-parametric sampling. In: Proc. IEEE Int. Conf. Computer Vision ICCV’99, Greece, Corfu, Sept. 1999, vol.2 (1999) 1033–1038.

    Google Scholar 

  6. Efros, A. A., Freeman, W. T.: Image quilting for texture synthesis and transfer. In: Proc. ACM SIGGRAPH’01, Los Angeles, Calif., August 2001, pp.341–346.

    Google Scholar 

  7. Gimel’farb, G. L.: Image Textures and Gibbs Random Fields. Kluwer Academic: Dordrecht (1999).

    Google Scholar 

  8. Gimel’farb, G.: Characteristic interaction structures in Gibbs texture modeling. In: Blanc-Talon, J., Popescu, D. C. (Eds.): Imaging and Vision Systems: Theory, Assessment and Applications. Nova Science: Huntington, N.Y. (2001) 71–90.

    Google Scholar 

  9. Gimel’farb, G.: Estimation of texels for regular mosaics using model-based interaction maps. In: Proc. Joint IAPR Int. Workshops SSPR 2002 and SPR 2002, Windsor, Ontario, Canada, August 2002 (Lecture Notes in Computer Science 2396), Springer: Berlin (2002) 177–185.

    Google Scholar 

  10. Haralick, R. M., Shapiro, L. G.: Computer and Robot Vision, vol.2. Addison-Wesley: Reading (1993).

    Google Scholar 

  11. Heeger, D., Bergen, J.: Pyramid-based texture analysis/synthesis. In: Computer Graphics 29 (Proc. ACM SIGGRAPH’95 Conf., Los Angeles, CA.) (1995) 229–238.

    Google Scholar 

  12. Julesz, B.: Textons, the elements of texture perception, and their interactions. Nature, no. 290 (1981) 91–97.

    Google Scholar 

  13. Kullback, S.: Information Theory and Statistics. John Wiley & Sons: New York (1959).

    MATH  Google Scholar 

  14. Liang, L., Liu, C., Xu, Y., Guo, B., Shum, H. Y.: Real-Time Texture Synthesis by Patch-Based Sampling. MSR-TR-2001-40. Microsoft Research (2001).

    Google Scholar 

  15. Picard, R., Graszyk, S., Mann, S., e.a.: VisTex Database. MITMedia Lab.: Cambridge, Mass. (1995).

    Google Scholar 

  16. Paget, R., Longsta., I. D.: Texture synthesis via a noncausal nonparametric multiscale Markov random field. IEEE Trans. on Image Processing 7 (1998) 925–931.

    Article  Google Scholar 

  17. Portilla, J., Simoncelli, E. P.: A parametric texture model based on joint statistics of complex wavelet coefficients. Int. Journal on Computer Vision 40 (2000) 49–71. 120, 121

    Article  MATH  Google Scholar 

  18. Zalesny, A., Van Gool, L.: A compact model for viewpoint dependent texture synthesis. In: Pollefeys, M., Van Gool, L., Zisserman, A., Fitzgibbon, A. (Eds.): 3D Structure from Images (Lecture Notes in Computer Science 2018). Springer: Berlin (2001) 124–143.

    Chapter  Google Scholar 

  19. Zhu, S. C., Wu, Y., Mumford, D.: Minimax entropy principle and its application to texture modeling. Neural Computation 9 (1997) 1627–1660.

    Article  Google Scholar 

  20. Zhu, S. C., Wu, Y., Mumford, D.: Filters, random fields and maximum entropy (FRAME): towards a unified theory for texture modeling. Int. Journal of Computer Vision 27 (1998) 107–126.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gimel’farb, G., Yu, L., Zhou, D. (2003). Geometric Structure and Randomness in Texture Analysis and Synthesis. In: Asano, T., Klette, R., Ronse, C. (eds) Geometry, Morphology, and Computational Imaging. Lecture Notes in Computer Science, vol 2616. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36586-9_8

Download citation

  • DOI: https://doi.org/10.1007/3-540-36586-9_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00916-0

  • Online ISBN: 978-3-540-36586-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics