Skip to main content

Non-Delaunay-Based Curve Reconstruction

  • Conference paper
  • First Online:
Algorithms and Computation (ISAAC 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2518))

Included in the following conference series:

Abstract

A new non-Delaunay-based approach is presented to reconstruct a curve, lying in 2- or 3-space, from a sampling of points. The underlying theory is based on bounding curvature to determine monotone pieces of the curve. Theoretical guarantees are established. The implemented algorithm, based heuristically on the theory, proceeds by iteratively partitioning the sample points using an octree data structure. The strengths of the approach are (a) simple implementation, (b) efficiency — experimental performance compares favorably with Delaunay-based algorithms, (c) robustness — curves with multiple components and sharp corners are reconstructed satisfactorily, and (d) potential extension to surface reconstruction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H-K. Ahn, O. Cheong, J. Matousek, A. Vigneron, Reachability by paths of bounded curvature in convex polygons, Proc. ACM Symp. on Comp. Geom. (2001) 251–259.

    Google Scholar 

  2. E. Althaus, K. Mehlhorn, Polynomial time TSP-based curve reconstruction, Proc. ACM-SIAM Symp. on Disc. Alg. (2000) 686–695.

    Google Scholar 

  3. N. Amenta, M. Bern, D. Eppstein, The crust and the β-skeleton: combinatorial curve reconstruction, Graphical Models and Image Processing 60/2 (1998) 125–135.

    Article  Google Scholar 

  4. D. Attali, r-regular shape reconstruction from unorganized points, Proc. ACM Symp. on Comp. Geom. (1997) 248–253.

    Google Scholar 

  5. F. Bernardini, C.L. Bajaj, Sampling and reconstructing manifolds using α-shapes, Proc. 9th Canadian Conf. on Comp. Geom. (1997) 193–198.

    Google Scholar 

  6. M. de Berg, M. van Kreveld, M. Overmars, O. Schwarzkopf, Computational Geometry: Algorithms and Applications, 2nd edn., Springer-Verlag (2000).

    Google Scholar 

  7. T. K. Dey, P. Kumar, A simple provable algorithm for curve reconstruction, Proc. ACM-SIAM Symp. Disc. Alg. (1999) 893–894.

    Google Scholar 

  8. T.K. Dey, K. Mehlhorn, E. Ramos, Curve reconstruction: connecting dots with good reason, Comput. Geom. Theory Appl. 15 (2000) 229–244.

    MATH  MathSciNet  Google Scholar 

  9. T.K. Dey, R. Wenger, Reconstructing curves with sharp corners, Proc. ACM Symp. on Comp. Geom. (2000) 233–241.

    Google Scholar 

  10. M. Do Carmo, Differential Geometry of Curves and Surfaces, Prentice Hall (1976).

    Google Scholar 

  11. H. Edelsbrunner, Shape reconstruction with Delaunay complex, LNCS 1380, LATIN’98: Theoretical Informatics (1998) 119–132.

    Chapter  Google Scholar 

  12. H. Edelsbrunner, D.G. Kirkpatrick, R. Seidel, On the shape of sets of points on the plane, IEEE Trans. on Info. Theory 29 (1983) 71–78.

    Article  MathSciNet  Google Scholar 

  13. L.H. de Figueiredo, J. de Miranda Gomes, Computational morphology of curves, The Visual Comp. 11 (1995) 105–112.

    Article  Google Scholar 

  14. J. Giesen, Curve reconstruction, the traveling salesman problem and Menger’s theorem on length, Proc. ACM Symp. on Comp. Geom. (1999) 207–216.

    Google Scholar 

  15. C.M. Gold, J. Snoeyink, A one-step crust and skeleton extraction algorithm, Algorithmica 30 (2001), 144–163.

    Article  MATH  MathSciNet  Google Scholar 

  16. M. Gopi, Theory and Practice of Sampling and Reconstruction for Manifolds with Boundaries, Ph.D. Dissertation (2001) http://www.cs.unc.edu/gopi/dis.pdf.

  17. M. Gopi, S. Krishnan, C.T. Silva, Surface reconstruction based on lower dimensional localized Delaunay triangulation, Proc. EUROGRAPHICS 2000 (2000) C467–C478.

    Google Scholar 

  18. M. Melkemi, \( \mathcal{A} \)-shapes of a finite point set, Proc. ACM Symp. on Comp. Geom. (1997) 367–372.

    Google Scholar 

  19. J. O’Rourke, H. Booth, R. Washington, Connect-the-dots: a new heuristic, Computer Vision, Graphics, and Image Proc. 39 (1987) 258–266.

    Article  Google Scholar 

  20. G. Pestov, V. Ionin, On the largest possible circle imbedded in a given closed curve, Dok. Akad. Nauk SSSR 127 (1959) 1170–1172.

    MATH  MathSciNet  Google Scholar 

  21. PointsNBoxes, freely downloadable curve reconstruction software, http://www.cs.uwm.edu/pnb.

  22. R.C. Veltkamp, The γ-neighborhood graph, Comput. Geom. Theory Appl. 1 (1992) 227–246.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Guha, S., Josiah, P., Mittal, A., Tran, S.D. (2002). Non-Delaunay-Based Curve Reconstruction. In: Bose, P., Morin, P. (eds) Algorithms and Computation. ISAAC 2002. Lecture Notes in Computer Science, vol 2518. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36136-7_8

Download citation

  • DOI: https://doi.org/10.1007/3-540-36136-7_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00142-3

  • Online ISBN: 978-3-540-36136-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics