Skip to main content

Targeting regulators of G protein signaling (RGS proteins) to enhance agonist specificity

  • Conference paper
Insights into Receptor Function and New Drug Development Targets

Part of the book series: Research and Perspectives in Endocrine Interactions ((RPEI))

  • 517 Accesses

Summary

Members of the diverse regulator of G protein signaling (RGS protein) family enhance the GTPase activity of G protein alpha subunits and speed their deactivation. Thus they negatively regulate signal transduction mediated by Gi- and Gq-coupled receptors. RGS proteins exhibit both tonic and regulated inhibition of agonist responses, differentially controlling the sensitivity of tissues depending on their post-translational modifications and expression levels. Reducing the activity of RGS proteins genetically or by means of chemical inhibitors can enhance G protein coupled receptor (GPCR) responses. RGS inhibitors present the novel possibility of enhancing agonist selectivity in a manner that depends on the signaling pathway employed or the tissue in which the receptor resides. To fully exploit this capability, more information will be needed about the expression of RGS proteins in different tissues and under distinct pathophysiological circumstances. Also, advances in the development of cell-permeable high affinity and selective inhibitors of specific RGS proteins will be needed. Finally, animal models illustrating the physiological functions of RGS proteins will be essential to predicting the actions in humans.

G protein coupled receptors (GPCRs) play a major role in signal transduction and are the targets of many therapeutic drugs. Signaling by G proteins is initiated by the agonist-mediated exchange of GTP for GDP on the Gα subunit and signaling is terminated by the hydrolysis of GTP to GDP followed by reassociation of the Gα and βγ subunits (Ross and Wilkie 2000). A recently described protein family, the regulator of G protein signaling (RGS) proteins, enhances the deactivation of the activity of G proteins and has now been show to play a major role in the control of GPCR signaling in vivo. In this report, I describe the mechanism and role of RGS proteins in controlling GPCR signaling and the potential utility of RGS inhibitors to enhance GPCR agonist responses.

The best known function of RGS proteins is to inhibit G protein signaling by accelerating GTP hydrolysis, thus turning off G protein signals (Berman et al. 1996). They are a highly diverse protein family, have unique tissue distributions, and are strongly regulated by signal transduction events (Hollinger and Hepler 2002; Neubig and Siderovski 2002). Also, evidence is emerging that, besides causing G protein inhibition, they can maintain efficient G protein signaling, serve as effectors to control downstream signals, and act as scaffold proteins to gather receptors, G proteins, effectors, and other regulatory molecules together (Siderovski et al. 1999; Hepler 2003).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arkin MR, Wells JA (2004) Small-molecule inhibitors of protein-protein interactions: progressing towards the dream. Nat Rev Drug Discov 3:301–317

    Article  PubMed  CAS  Google Scholar 

  • Berg T (2003) Modulation of protein-protein interactions with small organic molecules. Angew Chem Int Ed Engl 42:2462–2481

    Article  PubMed  CAS  Google Scholar 

  • Berman DM, Wilkie TM, Gilman AG (1996) GAIP and RGS4 are GTPase-activating proteins for the Gi subfamily of G protein alpha subunits. Cell 86:445–452

    Article  PubMed  CAS  Google Scholar 

  • Bian D, Mahanivong C, Yu J, Frisch SM, Pan ZK, Ye RD, Huang S (2005) The G(12/13)-RhoA signaling pathway contributes to efficient lysophosphatidic acid-stimulated cell migration. Oncogene

    Google Scholar 

  • Castellone MD, Teramoto H, Williams BO, Druey KM, Gutkind JS (2005) Prostaglandin E2 promotes colon cancer cell growth through a Gs-axin-beta-catenin signaling axis. Science 310:1504–1510

    Article  PubMed  CAS  Google Scholar 

  • Chen CK, Eversole-Cire P, Zhang H, Mancino V, Chen YJ, He W, Wensel TG, Simon MI (2003) Instability of GGL domain-containing RGS proteins in mice lacking the G protein beta-subunit Gbeta5. Proc Natl Acad Sci USA 100:6604–6609

    Article  PubMed  CAS  Google Scholar 

  • Chen H, Lambert NA (2000) Endogenous regulators of G protein signaling proteins regulate presynaptic inhibition at rat hippocampal synapses. Proc Natl Acad Sci USA 97:12810–12815

    Article  PubMed  CAS  Google Scholar 

  • Chen Z, Singer WD, Sternweis PC, Sprang SR (2005) Structure of the p115RhoGEF rgRGS domain-Galpha13/i1 chimera complex suggests convergent evolution of a GTPase activator. Nature Struct Mol Biol 12:191–197

    Article  CAS  Google Scholar 

  • Clark MJ, Harrison C, Zhong H, Neubig RR, Traynor JR (2003) Endogenous RGS protein action modulates mu-opioid signaling through Galphao. Effects on adenylyl cyclase, extracellular signal-regulated kinases, and intracellular calcium pathways. J Biol Chem 278:9418–9425

    Article  PubMed  CAS  Google Scholar 

  • Daub H, Specht K, Ullrich A (2004) Strategies to overcome resistance to targeted protein kinase inhibitors. Nature Rev Drug Discov 3:1001–1010

    Article  CAS  Google Scholar 

  • Fu Y, Zhong H, Nanamori M, Mortensen RM, Huang X, Lan K, Neubig RR (2004) RGS-insensitive G-protein mutations to study the role of endogenous RGS proteins. Meth Enzymol 389:229–243

    Article  PubMed  CAS  Google Scholar 

  • Garnier M, Zaratin PF, Ficalora G, Valente M, Fontanella L, Rhee MH, Blumer KJ, Scheideler MA (2003) Up-regulation of regulator of G protein signaling 4 expression in a model of neuropathic pain and insensitivity to morphine. J Pharmacol Exp Ther 304:1299–1306

    Article  PubMed  CAS  Google Scholar 

  • Garzon J, Lopez-Fando A, Sanchez-Blazquez P (2003) The R7 subfamily of RGS proteins assists tachyphylaxis and acute tolerance at mu-opioid receptors. Neuropsychopharmacology 28:1983–1990

    PubMed  CAS  Google Scholar 

  • Garzon J, Rodriguez-Munoz M, Lopez-Fando A, Sanchez-Blazquez P (2005) The RGSZ2 protein exists in a complex with mu-opioid receptors and regulates the desensitizing capacity of Gz proteins. Neuropsychopharmacology 30:1632–1648

    Article  PubMed  CAS  Google Scholar 

  • Gold SJ, Ni YG, Dohlman HG, Nestler EJ (1997) Regulators of G-protein signaling (RGS) proteins: region-specific expression of nine subtypes in rat brain. J Neurosci 17:8024–8037

    PubMed  CAS  Google Scholar 

  • Grafstein-Dunn E, Young KH, Cockett MI, Khawaja XZ (2001) Regional distribution of regulators of G-protein signaling (RGS) 1, 2, 13, 14, 16, and GAIP messenger ribonucleic acids by in situ hybridization in rat brain. Brain Res Mol Brain Res 88:113–123

    Article  PubMed  CAS  Google Scholar 

  • Grillet N, Pattyn A, Contet C, Kieffer BL, Goridis C, Brunet JF (2005) Generation and characterization of Rgs4 mutant mice. Mol Cell Biol 25:4221–4228

    Article  PubMed  CAS  Google Scholar 

  • Hague C, Bernstein LS, Ramineni S, Chen Z, Minneman KP, Hepler JR (2005) Selective inhibition of alpha1A-adrenergic receptor signaling by RGS2 association with the receptor third intracellular loop. J Biol Chem 280:27289–27295

    Article  PubMed  CAS  Google Scholar 

  • Han SB, Moratz C, Huang NN, Kelsall B, Cho H, Shi CS, Schwartz O, Kehrl JH (2005) Rgs1 and Gnai2 regulate the entrance of B lymphocytes into lymph nodes and B cell motility within lymph node follicles. Immunity 22:343–354

    Article  PubMed  CAS  Google Scholar 

  • Hepler JR (2003) RGS protein and G protein interactions: a little help from their friends. Mol Pharmacol 64:547–549

    Article  PubMed  CAS  Google Scholar 

  • Heximer SP, Knutsen RH, Sun X, Kaltenbronn KM, Rhee MH, Peng N, Oliveira-dos-Santos A, Penninger JM, Muslin AJ, Steinberg TH, Wyss JM, Mecham RP, Blumer KJ (2003) Hypertension and prolonged vasoconstrictor signaling in RGS2-deficient mice. J Clin Invest 111:1259

    Article  PubMed  CAS  Google Scholar 

  • Hollinger S Hepler JR (2002) Cellular regulation of RGS proteins: modulators and integrators of G protein signaling. Pharmacol Rev 54:527–559

    Article  PubMed  CAS  Google Scholar 

  • Ishii M, Fujita S, Yamada M, Hosaka Y, Kurachi Y (2005) Phosphatidylinositol 3,4,5-trisphosphate and Ca2+/calmodulin competitively bind to the regulators of G-protein-signalling (RGS) domain of RGS4 and reciprocally regulate its action. Biochem J 385:65–73

    Article  PubMed  CAS  Google Scholar 

  • Ishii M, Inanobe A, Kurachi Y (2002) PIP3 inhibition of RGS protein and its reversal by Ca2+/calmodulin mediate voltage-dependent control of the G protein cycle in a cardiac K+ channel. Proc Natl Acad Sci USA 99:4325–4330

    Article  PubMed  CAS  Google Scholar 

  • Jeong SW, Ikeda SR (2000) Endogenous regulator of G-protein signaling proteins modify N-type calcium channel modulation in rat sympathetic neurons. J Neurosci 20:4489–4496

    PubMed  CAS  Google Scholar 

  • Jin Y, Zhong H, Omnaas JR, Neubig RR, Mosberg HI (2004) Structure-based design, synthesis, and pharmacologic evaluation of peptide RGS4 inhibitors. J Pept Res 63:141–146

    Article  PubMed  CAS  Google Scholar 

  • Kozasa T, Jiang X, Hart MJ, Sternweis PM, Singer WD, Gilman AG, Bollag G, Sternweis PC (1998) p115 RhoGEF, a GTPase activatingprotein for Galpha12 and Galpha13. Science 280:2109–2111

    Article  PubMed  CAS  Google Scholar 

  • Lan KL, Sarvazyan NA, Taussig R, Mackenzie RG, DiBello PR, Dohlman HG, Neubig RR (1998) A point mutation in Galphao and Galphai1 blocks interaction with regulator of G protein signaling proteins. J Biol Chem 273:12794–12797

    Article  PubMed  CAS  Google Scholar 

  • Larminie C, Murdock P, Walhin JP, Duckworth M, Blumer KJ, Scheideler MA, Garnier M (2004) Selective expression of regulators of G-protein signaling (RGS) in the human central nervous system. Brain Res Mol Brain Res 122:24–34

    Article  PubMed  CAS  Google Scholar 

  • Lodowski DT, Pitcher JA, Capel WD, Lefkowitz RJ, Tesmer JJ (2003) Keeping G proteins at bay: a complex between G protein-coupled receptor kinase 2 and Gbetagamma. Science 300:1256–1262

    Article  PubMed  CAS  Google Scholar 

  • Martin-McCaffrey L, Willard FS, Oliveira-dos-Santos AJ, Natale DR, Snow BE, Kimple RJ, Pajak A, Watson AJ, Dagnino L, Penninger JM, Siderovski DP, D’Souza SJ (2004) RGS14 is a mitotic spindle protein essential from the first division of the mammalian zygote. Dev Cell 7:763–769

    Article  PubMed  CAS  Google Scholar 

  • Moratz C, Hayman JR, Gu H, Kehrl JH (2004)Abnormal B-cell responses to chemokines, disturbed plasma cell localization, and distorted immune tissue architecture in Rgs1-/-mice. Mol Cell Biol 24:5767–5775

    Article  PubMed  CAS  Google Scholar 

  • Neubig RR, Siderovski DP (2002) Regulators of G-protein signalling as new central nervous system drug targets. Nature Rev Drug Discov 1:187–197

    Article  CAS  Google Scholar 

  • Oliveira-Dos-Santos AJ, Matsumoto G, Snow BE, Bai D, Houston FP, Whishaw IQ, Mariathasan S, Sasaki T, Wakeham A, Ohashi PS, Roder JC, Barnes CA, Siderovski DP, Penninger JM (2000) Regulation of T cell activation, anxiety, and male aggression by RGS2. Proc Natl Acad Sci USA 97:12272–12277

    Article  PubMed  CAS  Google Scholar 

  • Pagliaro L, Felding J, Audouze K, Nielsen SJ, Terry RB, Krog-Jensen C, Butcher S (2004) Emerging classes of protein-protein interaction inhibitors and new tools for their development. Curr Opin Chem Biol 8:442–449

    Article  PubMed  CAS  Google Scholar 

  • Popov SG, Krishna UM, Falck JR, Wilkie TM (2000) Ca2+/Calmodulin reverses phosphatidylinositol 3,4, 5-trisphosphate-dependent inhibition of regulators of G protein-signaling GTPase-activating protein activity. J Biol Chem 275:18962–18968

    Article  PubMed  CAS  Google Scholar 

  • Rahman Z, Schwarz J, Gold SJ, Zachariou V, Wein MN, Choi KH, Kovoor A, Chen CK, DiLeone RJ, Schwarz SC, Selley DE, Sim-Selley LJ, Barrot M, Luedtke RR, Self D, Neve RL, Lester HA, Simon MI, Nestler EJ (2003) RGS9 modulates dopamine signaling in the basal ganglia. Neuron 38:941–952

    Article  PubMed  CAS  Google Scholar 

  • Roman DL, Neubig RR (2005) A novel multiplex flow cytometric method for measurement of Ga-RGS interaction and identification of small molecule inhibitors of RGS. FASEB J 19:259a

    Google Scholar 

  • Ross EM, Wilkie TM(2000) GTPase-activating proteins for heterotrimeric G proteins: regulators of G protein signaling (RGS) and RGS-like proteins. Annu Rev Biochem 69:795–827

    Article  PubMed  CAS  Google Scholar 

  • Roth BL, Sheffler DJ, Kroeze WK (2004) Magic shotguns versus magic bullets: selectively nonselective drugs for mood disorders and schizophrenia. Nature Rev Drug Discov 3:353–359

    Article  CAS  Google Scholar 

  • Salim S, Sinnarajah S, Kehrl JH, Dessauer CW (2003) Identification of RGS2 and type V adenylyl cyclase interaction sites. J Biol Chem 278:15842–15849

    Article  PubMed  CAS  Google Scholar 

  • Sanchez-Blazquez P, Rodriguez-Munoz M, Montero C, Garzon (2005) RGS-Rz and RGS9-2 proteins control mu-opioid receptor desensitisation in CNS: the role of activated Galphaz subunits. Neuropharmacology 48:134–150

    Article  PubMed  CAS  Google Scholar 

  • Siderovski DP, Strockbine B, Behe CI (1999) Whither goest the RGS proteins? Crit Rev Biochem Mol Biol 34:215–251

    Article  PubMed  CAS  Google Scholar 

  • Snow BE, Betts L, Mangion J, Sondek J, Siderovski DP (1999) Fidelity of G protein beta-subunit association by the G protein gamma-subunit-like domains of RGS6, RGS7, and RGS11. Proc Natl Acad Sci USA 96:6489–6494

    Article  PubMed  CAS  Google Scholar 

  • Sterne-Marr R, Tesmer JJ, Day PW, Stracquatanio RP, Cilente JA, O’Connor KE, Pronin AN, Benovic JL, Wedegaertner PB (2003) G protein-coupled receptor Kinase 2/G alpha q/11 interaction. A novel surface on a regulator of G protein signaling homology domain for binding G alpha subunits. J Biol Chem 278:6050–6058

    Article  PubMed  CAS  Google Scholar 

  • Tang KM, Wang GR, Lu P, Karas RH, Aronovitz M, Heximer SP, Kaltenbronn K, Blumer KJ, Siderovski D, Zhu Y, Mendelsohn ME (2003) Regulator of G-protein signaling-2 mediates vascular smooth muscle relaxation and blood pressure. Nat Med 9:1506–1512

    Article  PubMed  CAS  Google Scholar 

  • Tesmer JJ, Berman DM, Gilman AG, Sprang SR (1997) Structure of RGS4 bound to AlF4-activated G(i alpha1): stabilization of the transition state for GTP hydrolysis. Cell 89:251–261

    Article  PubMed  CAS  Google Scholar 

  • Traynor JR, Neubig RR (2005) Regulators of G protein signaling and drugs of abuse. Mol Interv 5:30–41

    Article  PubMed  CAS  Google Scholar 

  • Wang Q, Liu M, Kozasa T, Rothstein JD, Sternweis PC, Neubig RR (2004) Thrombin and lysophosphatidic acid receptors utilize distinct rhoGEFs in prostate cancer cells. J Biol Chem 279:28831–28834

    Article  PubMed  CAS  Google Scholar 

  • Wang Q, Liu M, Mullah, Siderovski DP, Neubig RR (2002) Receptor-selective effects of endogenous RGS3 and RGS5 to regulate mitogen-activated protein kinase activation in rat vascular smooth muscle cells. J Biol Chem 277:24949–24958

    Article  PubMed  CAS  Google Scholar 

  • Zachariou V, Georgescu D, Sanchez N, Rahman Z, DiLeone R, Berton O, Neve RL, Sim-Selley LJ, Selley DE, Gold SJ, Nestler EJ (2003) Essential role for RGS9 in opiate action. Proc Natl Acad Sci USA 100:13656–13661

    Article  PubMed  CAS  Google Scholar 

  • Zeng W, Xu X, Popov S, Mukhopadhyay S, Chidiac P, Swistok J, Danho W, Yagaloff KA, Fisher SL, Ross EM, Muallem S, Wilkie TM (1998) The N-terminal domain of RGS4 confers receptor-selective inhibition of G protein signaling. J Biol Chem 273:34687–34690

    Article  PubMed  CAS  Google Scholar 

  • Zheng B, Ma YC, Ostrom RS, Lavoie C, Gill GN, Insel PA, Huang XY, Farquhar MG (2001) RGS-PX1, a GAP for GalphaS and sorting nexin in vesicular trafficking. Science 294:1939–1942

    Article  PubMed  CAS  Google Scholar 

  • Zhong H, Neubig RR (2001) Regulator of G protein signaling proteins: novel multifunctional drug targets. J Pharmacol Exp Ther 297:837–845

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Neubig, R.R. (2006). Targeting regulators of G protein signaling (RGS proteins) to enhance agonist specificity. In: Conn, M., Kordon, C., Christen, Y. (eds) Insights into Receptor Function and New Drug Development Targets. Research and Perspectives in Endocrine Interactions. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-34447-0_6

Download citation

Publish with us

Policies and ethics