Skip to main content

Inclusion Proteins fromother Insecticidal Bacteria

  • Chapter
Inclusions in Prokaryotes

Part of the book series: Microbiology Monographs ((MICROMONO,volume 1))

Abstract

The toxicity of Bacillus thuringiensis and B. sphaericus, insecticidal bacteria that have been used widely for insect pest and vector control, is due to insecticidal protein crystals produced during sporulation. Whereas the insecticidal crystals of these two species have been studied extensively owing to their practical value, there are several other lesser known entomopathogenic bacteria that also produce either crystalline or noncrystalline protein inclusions, some of which are insecticidal. For example, Paenibacillus popilliae, a biological control agent of grubs, the immature stages of beetle larvae, forms parasporal crystals toxic to scarab larvae. A mosquitocidal strain of Clostridium bifermentans produces parasporal inclusion bodies lacking a crystalline structure. Mosquitocidal strains of Brevibacillus laterosporus produce crystalline inclusions of various shapes and sizes. In addition, two nematode-symbiotic bacteria, Photorhabdus luminescens and Xenorhabdus nematophilus produce large amounts of crystalline proteins that are not toxic to insects. In this paper, the characteristics of the protein inclusions produced by these entomopathogenic bacteria are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akhurst RJ (1980) Morphological and functional dimorphism in Xenorhabdus spp, bacteria symbiotically associated with the insect pathogenic nematodes Neoaplectana and Heterorhabditis. J Gen Microbiol 121:303–309

    Google Scholar 

  • Akhurst RJ (1982) Antibiotic activity of Xenorhabdus spp, bacteria symbiotically associated with the insect pathogenic nematodes of the families Heterorhabditidae and Steinernematidae. J Gen Microbiol 128:3061–3065

    PubMed  CAS  Google Scholar 

  • Akhurst R, Dunphy GB (1993) Tripartite interactions between symbiotically associated entomopathogenic bacteria, nematodes and their insect hosts. In: Beckage NE, Thompson SN, Federici BA (eds) Parasites and pathogens of insects, vol 2. Academic, New York, pp 1–23

    Google Scholar 

  • Aquino de Muro M, Mitchell WJ, Priest FG (1992) Differentiation of mosquito-pathogenic strains of Bacillus sphaericus from non-toxic varieties by ribosomal RNA gene restriction patterns. J Gen Microbiol 138:1159–1166

    PubMed  CAS  Google Scholar 

  • Barloy F, Delécluse A, Nicolas L, Lecadet M-M (1996) Cloning and expression of the first anaerobic toxin gene from Clostridium bifermentans subsp. malaysia, encoding a new mosquitocidal protein with homologies to Bacillus thuringiensis delta-endotoxins. J Bacteriol 178:3099–3105

    PubMed  CAS  Google Scholar 

  • Barloy F, Lecadet M-M, Delécluse A (1998a) Cloning and sequencing of three new putative toxin genes from Clostridium bifermentans CH18. Gene 211:293–299

    Article  PubMed  CAS  Google Scholar 

  • Barloy F, Lecadet M-M, Delécluse A (1998b) Distribution of Clostridial cry-like genes among Bacillus thuringiensis and Clostridium strains. Curr Microbiol 36:232–237

    Article  PubMed  CAS  Google Scholar 

  • Bintrim SB, Ensign JC (1998) Insertional inactivation of genes encoding the crystalline inclusion proteins of Photorhabdus results in mutants with pleiotropic phenotypes. J Bacteriol 180:1261–1269

    PubMed  CAS  Google Scholar 

  • Bowen DJ, Ensign JC (2001) Isolation and characterization of intracellular protein inclusions produced by the entomopathogenic bacterium Photorhabdus luminescens. Appl Environ Microbiol 67:4834–4841

    Article  PubMed  CAS  Google Scholar 

  • Bowen D, Rocheleau TA, Blackburn M, Andreev O, Golubeva E, Bhartia R, ffrench-Constant RH (1998) Insecticidal toxins from the bacterium Photorhabdus luminescens. Science 280:2129–2132

    Article  PubMed  CAS  Google Scholar 

  • Charles J-F, Nicolas L, Sebald M, de Barjac M (1990) Clostridium bifermentans serovar malaysia: sporulation, biogenesis of inclusion bodies and larvicidal effect on mosquito. Res Microbiol 141:721–733

    Article  PubMed  CAS  Google Scholar 

  • Chattopadhyay A, Bhatnagar NB, Bhatnagar R (2004) Bacterial insecticidal toxins. Crit Rev Microbiol 30:33–54

    Article  PubMed  CAS  Google Scholar 

  • Couche GA, Gregson RP (1987) Protein inclusions produced by the entomopathogenic bacterium Xenorhabdus nematophilus subsp. nematophilus. J Bacteriol 169:5279–5288

    PubMed  CAS  Google Scholar 

  • Crickmore N, Zeigler DR, Feitelson J, Schnepf E, Van Rie J, Lereclus D, Baum J, Dean DH (1998) Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiol Mol Biol Rev 62:807–813

    PubMed  CAS  Google Scholar 

  • Crickmore N, Zeigler DR, Schnepf E, Van Rie J, Lereclus D, Baum J, Bravo A, Dean DH (2005) http://www.lifesci.sussex.ac.uk/Home/Neil_Crickmore/Bt/

    Google Scholar 

  • de Barjac H, Sebald M, Charles J-F, Cheong WH, Lee HH (1990) Clostridium bifermentans serovar malaysia, une nouvelle bactérie anaérobie pathogène des larves de moustiques et de simulies. C R Acad Sci Ser III 310:383–387

    PubMed  Google Scholar 

  • Dervyn E, Poncet S, Klier A, Rapoport G (1995) Transcriptional regulation of the cryIVD gene operon from Bacillus thuringiensis subsp. israelensis. J Bacteriol 177:2283–2291

    PubMed  CAS  Google Scholar 

  • Duchaud E, Rusniok C, Frangeul L, Buchrieser C, Givaudan A, Taourit S, Bocs S, Boursaux-Eude C, Chandler M, Charles J-F, Dassa E, Derose R, Derzelle S, Freyssinet G, Gaudriault S, Médigue C, Lanois A, Powell K, Siguier P, Vincent R, Wingate V, Zouine M, Glaser P, Boemare N, Danchin A, Kunst F (2003) The genome sequence of the entomopathogenic bacterium Photorhabdus lumunescens. Nat Biotechnol 21:1307–1313

    Article  PubMed  CAS  Google Scholar 

  • Favret ME, Yousten AA (1985) Insecticidal activity of Bacillus laterosporus. J Invertebr Pathol 45:195–203

    Article  PubMed  CAS  Google Scholar 

  • Federici BA, Park H-W, Bideshi DK, Wirth MC, Johnson JJ (2003) Recombinant bacteria for mosquito control. J Exp Biol 206:3877–3885

    Article  PubMed  CAS  Google Scholar 

  • ffrench-Constant R, Bowen D (1999) Photorhabdus toxins: novel biological insecticides. Curr Opin Microbiol 2:284–288

    Article  PubMed  CAS  Google Scholar 

  • Grochulski P, Masson L, Borisova S, Pusztai Carey M, Schuwartz JL, Brousseau R, Cygler M (1995) Bacillus thuringiensis CryIA(a) insecticidal toxin: crystal structure and channel formation. J Mol Biol 254:447–464

    Article  PubMed  CAS  Google Scholar 

  • Harrison H, Patel R, Yousten AA (2000) Paenibacillus associated with milky disease in Central and South American scarabs. J Invertebr Pathol 76:169–175

    Article  PubMed  CAS  Google Scholar 

  • Juárez-Pérez V, Delécluse A (2001) The Cry toxins and the putative hemolysins of Clostridium bifermentans ser. malaysia are not involved in mosquitocidal activity. J Invertebr Pathol 78:57–58

    Article  PubMed  CAS  Google Scholar 

  • Khan A, Brooks W (1977) A chromogenic bioluminescent bacterium associated with the entomophilic nematode Chromonema heliothidis. J Invertebr Pathol 29:253–261

    CAS  Google Scholar 

  • Klein MG (1992) Use of Bacillus popilliae in Japanese beetle control. In: Jackson TA, Glare TR (eds) Use of pathogens in scarab pest management. Intercept, Andover, pp 179–189

    Google Scholar 

  • Li JD, Carroll J, Ellar DJ (1991) Crystal structure of insecticidal delta-endotoxin from Bacillus thuringiensis at 2.5 Ã… resolution. Nature 353:815–821

    Article  PubMed  CAS  Google Scholar 

  • Nicolas L, Charles J-F, de Barjac H (1993) Clostridium bifermentans serovar malaysia: characterization of putative mosquito larvicidal proteins. FEMS Microbiol Lett 113:23–28

    Article  PubMed  CAS  Google Scholar 

  • Orlova MV, Smirnova TA, Ganushkina LA, Yacubovich VY, Azizbekyan RR (1998) Insecticidal activity of Bacillus laterosporus. Appl Environ Microbiol 64:2723–2725

    PubMed  CAS  Google Scholar 

  • Petterson B, Rippere K, Yousten A, Priest F (1999) Transfer of Bacillus lentimorbus and Bacillus popilliae to the genus Paenibacillus with emended descriptions of Paenibacillus lentimorbus comb. nov. and Paenibacillus popilliae comb. nov. Int J Syst Bacteriol 49:531–540

    Article  Google Scholar 

  • Poinar GO, Thomas GM, Hess R (1977) Characteristics of the specific bacterium associated with Heterorhabditis bacteriophora (Heterorhabditidae: Rhabditida). Nematologica 23:97–102

    Article  Google Scholar 

  • Rivers DB, Vann CN, Dean DH (1991) Mosquitocidal activity of Bacillus laterosporus. J Invertebr Pathol 43:383–388

    Google Scholar 

  • Schnepf E, Crickmore N, Van Rie J, Lereclus D, Baum J, Feitelson J, Zeigler DR, Dean DH (1998) Bacillus thuringiensis and its pesticidal proteins. Microbiol Mol Biol Rev 62:775–806

    PubMed  CAS  Google Scholar 

  • Seleena P, Lee HL (1994) Absence of plasmid in mosquitocidal Clostridium bifermentans serovar malaysia. Southeast Asian J Trop Med Public Health 25:394–396

    PubMed  CAS  Google Scholar 

  • Smirnova TA, Minenkova IB, Orlova MV, Lecadet M-M, Azizbekyan RR (1996) The crystal-forming strains of Bacillus laterosporus. Res Microbiol 147:343–350

    Article  PubMed  CAS  Google Scholar 

  • Splittstoesser CM, Tashiro H, Lin SL (1978) Infection of European chafer, Amphimallon majalis, by Bacillus popilliae: light and electron microscope observations. J Invertebr Pathol 31:84–90

    Article  Google Scholar 

  • Stahly DP, Klein MG (1992) Problems with in vitro production of spores of Bacillus popilliae for use in the control of the Japanese beetle. J Invertebr Pathol 60:283–291

    Article  Google Scholar 

  • Valyasevi R, Kyle MM, Christie PJ, Steinkraus KH (1990) Plasmis in Bacillus popilliae. J Invertebr Pathol 56:286–288

    Article  PubMed  CAS  Google Scholar 

  • Weiner BA (1978) Isolation and partial characterization of the parasporal body of Bacillus popilliae. Can J Microbiol 24:1557–1561

    Article  PubMed  CAS  Google Scholar 

  • Widner WR, Whiteley HR (1989) Two highly related insecticidal crystal proteins of Bacillus thuringiensis subsp. kurstaki possess different host range specificities. J Bacteriol 171:965–974

    PubMed  CAS  Google Scholar 

  • Zhang J, Hodgman TC, Krieger L, Schnetter W, Schairer HU (1997) Cloning and analysis of the first cry gene from Bacillus popilliae. J Bacteriol 179:4336–4341

    PubMed  CAS  Google Scholar 

  • Zhang J, Schairer HU, Schnetter W, Lereclus D, Agaisse H (1998) Bacillus popilliae cry18Aa operon is transcribed by σ E and σ K forms of RNA polymerase from a single initiation site. Nucleic Acids Res 26:1288–1293

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Park, HW., Federici, B.A., Sakano, Y. (2006). Inclusion Proteins fromother Insecticidal Bacteria. In: Shively, J.M. (eds) Inclusions in Prokaryotes. Microbiology Monographs, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-33774-1_13

Download citation

Publish with us

Policies and ethics