Skip to main content

Metal Inclusions in Bacteria

  • Chapter
Inclusions in Prokaryotes

Part of the book series: Microbiology Monographs ((MICROMONO,volume 1))

Abstract

A variety of bacterial metal and metalloid inclusions have recently been described. These include particles of iron, manganese, cobalt, chromium and selenium. Iron and manganese inclusions may provide a mechanism for the storage of excess electron acceptors. Cobalt- and chromium-containing inclusions appear to function like classical magnetosomes, and may also provide protection against metal and oxygen toxicity. Selenium inclusions may also provide a defense mechanism against selenate and selenite toxicity, and (for at least one species) may represent a storage form of reducible selenium. The production of these particles may have important implications for research in biogeochemical cycling, bioremediation, biotechnology and even in the search for extraterrestrial life.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ariskina EV, Vatsurina AV, Suzina NE, Gavrish EY (2004) Cobalt-and chromiumcontaining inclusions in bacterial cells. Mikrobiologiya 73:199–203

    CAS  Google Scholar 

  • Blakemore RP (1975) Magnetotactic bacteria. Science 190:377–379

    PubMed  CAS  Google Scholar 

  • Cannon GC, Bradburne CE, Aldrich HC, Baker SH, Heinhorst S, Shively JM (2001) Microcompartments in prokaryotes: carboxysomes and related polyhedra. Appl Environ Microbiol 67:5351–5361

    Article  PubMed  CAS  Google Scholar 

  • Chavez FP, Lunsdorf H, Jerez CA (2004) Growth of polychlorinated-biphenyl-degrading bacteria in the presence of biphenyl and chlorobiphenyls generates oxidative stress and massive accumulation of inorganic polyphosphate. Appl Environ Microbiol 70:3064–3072

    Article  PubMed  CAS  Google Scholar 

  • Ehrlich HL (2002) Geomicrobiology. Dekker, New York

    Google Scholar 

  • Farina M, Esquivel DMS, Lins de Barros HGP (1990) Magnetic iron-sulfur crystals from a magnetotactic microorganism. Nature 343:256–258

    Article  CAS  Google Scholar 

  • Glasauer S, Langley S, Beveridge TJ (2002) Intracellular iron minerals in a dissimilatory iron-reducing bacterium. Science 295:117–119

    Article  PubMed  CAS  Google Scholar 

  • Glasauer S, Langley S, Beveridge TJ (2004) Intracellular manganese granules formed by a subsurface bacterium. Environ Microbiol 6:1042–1048

    Article  PubMed  CAS  Google Scholar 

  • Herbel MJ, Switzer Blum J, Borglin SE, Oremland RS (2003) Reduction of elemental selenium to selenide: experiments with anoxic sediments and bacteria that respire Se-oxyanions. Geomicrobiol J 20:587–602

    CAS  Google Scholar 

  • James BW, Mauchline WS, Dennis PJ, Keevil CW, Wait R (1999) Poly-3-hydroxybutyrate in Legionella pneumophila, an energy source for survival in low-nutrient environments. Appl Environ Microbiol 65:822–827

    PubMed  CAS  Google Scholar 

  • Komeili A, Hojatollah V, Beveridge TJ, Newman DK (2004) Magnetosome vesicles are present before magnetite formation, and MamA is required for their activation. Proc Natl Acad Sci USA 101:3839–3844

    Article  PubMed  CAS  Google Scholar 

  • Langley S, Glasauer S, Beveridge TJ (2002) Formation of intracellular Mn minerals by Shewanella putrefaciens-CN32. Abstract no Q-433. American Society for Microbiology 102nd annual general meeting, Salt Lake City

    Google Scholar 

  • Lechaire J-P, Shillito B, Frébourg G, Gaill F (2002) Elemental characterization of microorganism granules by EFTEM in the tube wall of a deep-sea vent invertebrate. Biol Cell 94:243–249

    Article  PubMed  CAS  Google Scholar 

  • Lovley DR, Stolz JF, Nord GL Jr, Phillips EJP (1986) Anaerobic production of magnetite by a dissimilatory iron-reducing microorganism. Nature 330:252–254

    Article  Google Scholar 

  • Mann S, Sparks NHC, Frankel RB, Bazylinski DA, Jannasch HW (1990) Biomineralization of ferrimagnetic greigite (Fe3S4) and iron pyrite (FeS2) in a magnetotactic bacterium. Nature 343:258–261

    Article  CAS  Google Scholar 

  • Nakamura C, Burgess JG, Sode K, Matsunaga T (1995) An iron-regulated gene, magA, encoding an iron transport protein of Magnetospirillum AMB-1. J Biol Chem 270:28392–28396

    Article  PubMed  CAS  Google Scholar 

  • Nelson DC, Casey WH, Sison JD, Mack ER, Ahmad A, Pollack JS (1996) Selenium uptake by sulfur-accumulating bacteria. Geochim Cosmochim Acta 60:3531–3539

    Article  CAS  Google Scholar 

  • Oremland RS, Herbel MJ, Switzer Blum J, Langley S, Beveridge TJ, Ajayan PM, Sutto T, Ellis AV, Curran S (2004) Structural and spectral features of selenium nanospheres produced by selenium-respiring bacteria. Appl Environ Microbiol 70:52–60

    Article  PubMed  CAS  Google Scholar 

  • Roux M, Sarret G, Pignot-Paintrand I, Fontecave M, Covès J (2001) Mobilization of selenite by Ralstonia metallidurans CH32. Appl Environ Microbiol 67:769–773

    Article  PubMed  CAS  Google Scholar 

  • Sarret G, Avoscan L, Carrière M, Collins R, Geoffroy N, Carrot F, Covès J, Gouget B (2005) Chemical forms of selenium in the metal-resistant bacterium Ralstonia metallidurans CH34 exposed to selenite and selenate. Appl Environ Microbiol 71:2331–2337

    Article  PubMed  CAS  Google Scholar 

  • Switzer Blum J, Burns Bindi A, Buzzelli J, Stolz JF, Oremland RS (1998) Bacillus arsenicoselenatis sp. nov. and Bacillus selentireducens sp. nov.: two haloalkaliphiles from Mono Lake, California that respire oxyanions of selenium and arsenic. Arch Microbiol 171:19–30

    Article  PubMed  CAS  Google Scholar 

  • Vainshtein M, Suzina N, Kudryashova E, Ariskina E (2002) New magnet-sensitive structures in bacterial and archaeal cells. Biol Cell 94:29–35

    Article  PubMed  CAS  Google Scholar 

  • van Veen HW, Abee T, Kortstee GJJ, Konings WN, Zehnder AJB (1994) Translocation of metal phosphate via the phosphate inorganic transport (Pit) system of Escherichia coli. Biochemistry 33:1766–1770

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Langley, S. (2006). Metal Inclusions in Bacteria. In: Shively, J.M. (eds) Inclusions in Prokaryotes. Microbiology Monographs, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-33774-1_12

Download citation

Publish with us

Policies and ethics