Skip to main content

Research on Endophytic Bacteria: Recent Advances with Forest Trees

  • Chapter
Microbial Root Endophytes

Part of the book series: Soil Biology ((SOILBIOL,volume 9))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Achouak W, Normand P, Heulin T (1999) Comparative phylogeny of rrs and nifH genes in Bacillaceae. Int J Syst Bacteriol 49:961–967

    PubMed  CAS  Google Scholar 

  • Ash C, Farrow JAE, Collins MD (1993) Molecular identification of rRNA group 3 bacilli using a PCR probe test: proposal for the creation of a genus Paenibacillus. Antonie van Leeuwenhoek 64:253–260

    Article  PubMed  CAS  Google Scholar 

  • Bal A (2003) Can lodgepole pine derive biologically significant amounts of N from bacterial endophytes? MSc Thesis, The University of British Columbia, Vancouver BC

    Google Scholar 

  • Balandreau J, Knowles R (1978) The rhizosphere. In: Dommergues YR, Krupa SV (eds) Interactions between non-pathogenic soil microorganisms and plants. Elsevier, Amsterdam, pp 243–268

    Google Scholar 

  • Baldani VLD, Döbereiner J (1980) Host plant specificity in the infection of cereals with Azospirillum ssp. Soil Biol Biochem 12:433–439

    Article  Google Scholar 

  • Bent E, Chanway CP (1997) PGPR-mediated growth promotion effects on lodgepole pine can be inhibited by the presence of a rhizobacterial competitor. In: Ogoshi A et al. (eds) Plant growth-promoting Rhizobacteria: present status and future prospects. Nakanishi, Sapporo, pp 233–239

    Google Scholar 

  • Binkley D (1995) The influence of tree species on forest soils: processes and patterns. In: Mead DJ, Cornforth IS (eds) Proceedings of the trees and soil workshop, Lincoln University, 28 February–2 March 1994, Lincoln University Press, New Zealand, pp 1–33

    Google Scholar 

  • Boddey RM, Döbereiner J (1995) Nitrogen fixation associated with grasses and cereals: recent progress and perspectives for the future. Fertil Res 42:241–250

    Article  CAS  Google Scholar 

  • Brock TD, Madigan MT, Martinko JM, Parker J (1994) Biology of microorganisms. Prentice Hall, New Jersey

    Google Scholar 

  • Brooks DS, Gonzalez CF, Appel DN, Filer TH (1994) Evaluation of endophytic bacteria as potential biological control agents for oak wilt. Biol Control 4:373–381

    Article  Google Scholar 

  • Carroll G (1988) Fungal endophytes in stems and leaves: fromlatent pathogen to mutualistic symbiont. Ecology 69:2–9

    Article  Google Scholar 

  • Cavalcante VA, Döbereiner J (1988) A new acid-tolerant nitrogen-fixing bacterium associated with sugarcane. Plant Soil 108:23–31

    Article  Google Scholar 

  • Chanway CP (1997) Inoculation of tree roots with plant growth promoting soil bacteria: an emerging technology for reforestation. For Sci 43:99–112

    Google Scholar 

  • Chanway CP, Holl FB (1991) Biomass increase and associative nitrogen fixation of mycorrhizal Pinus contorta seedlings inoculated with a plant growth promoting Paenibacillus strain. Can J Bot 69:507–511

    CAS  Google Scholar 

  • Chanway CP, Holl FB (1992) Influence of soil biota on Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) seedling growth: the role of rhizosphere bacteria. Can J Bot 70:1025–1031

    Google Scholar 

  • Chanway CP, Holl FB (1993) Field performance of spruce seedlings after inoculation with plant growth promoting rhizobacteria. Can J Microbiol 39:1084–1088

    Google Scholar 

  • Chanway CP, Holl FB (1994) Growth of outplanted lodgepole pine seedlings one year after inoculation with plant growth promoting rhizobacteria. For Sci 40:238–246

    Google Scholar 

  • Chanway CP, Shishido M, Holl FB (1994) Root-endophytic and rhizosphere plant growth promoting rhizobacteria for conifer seedlings. In: Ryder MH, Stephens PM, Bowen GD (eds) Improving plant productivity with rhizosphere bacteria. CSIRO Division of Soils 1994:72–74

    Google Scholar 

  • Chanway CP, Shishido M, Jungwirth S, Nairn J, Markham G, Xiao, Holl FB (1997) Second year growth responses of outplanted conifer seedlings inoculated with PGPR. In: Ogoshi A, Kobayashi K, Homma Y, Kodama F, Kondo N, Akino S (eds) Plant growth-promoting Rhizobacteria present status and future prospects. Nakanishi, Sapporo, pp 172–176

    Google Scholar 

  • Chanway CP, Shishido M, Nairn J, Jungwirth S, Markham J, Xiao G, Holl FB (2000) Endophytic colonisation and field responses of hybrid spruce seedlings after inoculation with plant growth promoting rhizobacteria. For Ecol Manage 133:81–88

    Article  Google Scholar 

  • Clay K (1988) Fungal endophytes of grasses: a defensive mutualism between plants and fungi. Ecology 69:10–16

    Article  Google Scholar 

  • Döbereiner J, Urquiaga S, Boddey RM (1995) Alternatives for nitrogen nutrition of crops in tropical agriculture. Fertil Res 42:339–346

    Article  Google Scholar 

  • Fitter AH, Garbaye J (1994) Interaction between mycorrhizal fungi and other soil organisms. Plant Soil 159:123–132

    Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117

    CAS  Google Scholar 

  • Gardner JM, Feldman AW, Zablotowicz M (1982) Identity and behavior of xylem-residing bacteria in rough lemon roots of Florida citrus trees. Appl Environ Microbiol 43:1335–1342

    PubMed  Google Scholar 

  • Hallmann J, Quadt-Hallmann A, Mahafee WF, Kloepper JW (1997) Bacterial endophytes in agricultural crops. Can J Microbiol 43:895–914

    Article  CAS  Google Scholar 

  • Holl FB, Chanway CP, Turkington R, Radley RA (1988) Response of crested wheatgrass (Agropyron cristatum L), perennial ryegrass (Lolium perenne L) and white clover (Trifoliumrepens L.) to inoculation with Paenibacillus polymyxa. Soil Biol Biochem 20:19–24

    Article  CAS  Google Scholar 

  • Hollis JP (1951) Bacteria in healthy potato tissue. Phytopathology 41:320–366

    Google Scholar 

  • Hunt R (1982) Plant growth curves. University Park Press, Baltimore

    Google Scholar 

  • Hurek T, Reinhold-Hurek B, Van Montagu M, Kellenberger E (1994) Root colonisation and systemic spreading of Azoarcus sp. strain BH72 in grasses. J Bacteriol 176:1913–1923

    PubMed  CAS  Google Scholar 

  • James EK (2000) Nitrogen fixation in endophytic and associative symbiosis. Field Crops Res 65:197–209

    Article  Google Scholar 

  • James EK, Olivares FL (1997) Infection and colonisation of sugar cane and other graminaceous plants by endophytic diazotrophs. Crit Rev Plant Sci 17:77–119

    Article  Google Scholar 

  • Kloepper JW (1993) Plant growth-promoting rhizobacteria as biological control agents. In: Metting FB (ed) Soil microbial ecology applications in agricultural and environmental management. Dekker, New York, pp 255–274

    Google Scholar 

  • Kloepper JW, Lifshitz R, Zablotowicz RM (1989) Free living bacterial inocula for enhancing crop productivity. Trends Biotechnol 7:39–44

    Article  Google Scholar 

  • Law R, Lewis DH (1983) Biotic environments and the maintenance of sex — some evidence from mutualistic symbioses. Biol J Linn Soc 20:249–276

    Google Scholar 

  • Lehninger AL (1975) Biochemistry: the molecular basis of cell structure and function. Worth, New York

    Google Scholar 

  • Li CY, Massicotte HB, Moore LV (1992) Nitrogen fixing Bacillus sp. associated with Douglas fir tuberculate ectomycorrhizae. Plant Soil 140:35–40

    Article  CAS  Google Scholar 

  • Lodewyckx C, Vangronsveld I, Porteous F, Moore ERB, Taghavi S, Mezgeay M, Vander lella D (2002) Endophytic bacteria and their potential applications. Crit Rev Plant Sci 21:583–606

    Article  Google Scholar 

  • Mavingui P, Laguerre PG, Berge O, Heulin T (1992) Genotypic and phenotypic variability of Paenibacillus polymyxa in soil and in the rhizosphere of wheat. Appl Environ Microbiol 58:1894–1903

    PubMed  CAS  Google Scholar 

  • McInroy JA, Kloepper JW (1994) Novel bacterial taxa inhabiting internal tissue of sweet corn and cotton. In: Ryder MH, Stephens PM, Bowen GD (eds) Improving plant productivity with rhizosphere bacteria. CSIRO, Melbourne, Australia

    Google Scholar 

  • Mengoni A, Mocali S, Surico G, Tegli S, Fani R (2003) Fluctuation of endophytic bacteria and phytoplasmosis in elm trees. Microbiol Res 158:363–369

    Article  PubMed  CAS  Google Scholar 

  • Misaghi IJ, Donndelinger CR (1990) Endophytic bacteria in symptom-free cotton plants. Phytopathology 80:808–811

    Google Scholar 

  • Mocali S, Bertelli E, Di Cello F, Mengoni A, Sfalanga A, Viliani F, Caciotti A, Tegli S, Surico G, Fani R (2003) Fluctuation of bacteria isolated from elm tissues during different seasons and from different plant organs. Microbiol Res 154:105–114

    Article  Google Scholar 

  • Musson G, McInroy JA, Kloepper JW (1995) Development of delivery systems for introducing endophytic bacteria into cotton. Biocontrol Sci Technol 5:407–416

    Article  Google Scholar 

  • O’Neill GA, Chanway CP, Axelrood PE, Radley RA, FB Holl (1992) Growth response specificity of spruce inoculated with coexistent rhizosphere bacteria. Can J Bot 70:2347–2353

    Google Scholar 

  • Paul EA, Clark FE (1989) Soil microbiology and biochemistry. Academic, New York

    Google Scholar 

  • Pokojska-Burdziej A (1982) The effect of microorganisms, microbial metabolites and plant growth regulators on the growth of pine seedlings (Pinus sylvestris L.). Pol J Soil Sci 15:137–143

    CAS  Google Scholar 

  • Rennie RJ (1981) A single medium for the isolation of acetylene-reducing (dinitrogen-fixing) bacteria from soils. Can J Microbiol 27:8–14

    PubMed  CAS  Google Scholar 

  • Rennie RJ, Rennie DA, Fried M (1978) Concepts of 15N usage in dinitrogen fixation studies. In: Isotopes in biological dinitrogen fixation. International Atomic Energy Agency, Vienna, pp 107–133

    Google Scholar 

  • Reinhold-Hurek B, Hurek T (1998) Interactions of Gramineous plants with Azoarcus spp. and other diazotrophs: identification, localization, and perspectives to study their function. Crit Rev Plant Sci 17:29–54

    Article  Google Scholar 

  • Rhodes-Roberts M (1981) The taxonomy of some nitrogen fixing Paenibacillus species with special reference to nitrogen fixation. In: Berkeley RCW, Goodfellow M (eds) The aerobic-endosperm forming bacteria classification and identification. Academic, London, pp 315–335

    Google Scholar 

  • Schardl CL, Leuchtmann A, Spiering MJ (2004) Symbioses of grasses with seedborne fungal endophytes. Annu Rev Plant Biol 55:315–340

    Article  PubMed  CAS  Google Scholar 

  • Shishido M (1997) PGPR for interior spruce seedlings. PhD Thesis University of British Columbia, Vancouver BC

    Google Scholar 

  • Shishido M, Chanway CP (2000) Colonisation and growth promotion of outplanted spruce seedlings pre-inoculated with plant growth-promoting rhizobacteria in the greenhouse. Can J For Res 30:845–854

    Article  Google Scholar 

  • Shishido M, Loeb BM, Chanway CP (1995) External and internal root colonisation of lodgepole pine seedlings by two growth-promoting Paenibacillus strains originated from different root microsites. Can J Microbiol 41:707–713

    Article  CAS  Google Scholar 

  • Shishido M, Massicotte HB, Chanway CP (1996) Effect of plant growth promoting Paenibacillus strains on pine and spruce seedling growth and mycorrhizal infection. Ann Bot 77:433–441

    Article  Google Scholar 

  • Sprent JL, James EK (1995) N2-fixation by endophytic bacteria: questions of entry and operation. In: Fendrick I (ed) NATO ASI series, Azospirillum VI and related microorganisms, vol G. Springer, Berlin Heidelberg New York, pp 15–30

    Google Scholar 

  • Tervet IW, Hollis JP (1948) Bacteria in the storage organs of healthy plants. Phytopathology 38:960–967

    Google Scholar 

  • Timmusk S, Wagner EGH (1999) The plant-growth-promoting rhizobacterium Paenibacillus polymyxa induces changes in Arabidopsis thaliana gene expression: a possible connection between biotic and abiotic stress responses. Mol Plant-Microbe Interact 12:951–959

    PubMed  CAS  Google Scholar 

  • Triplett EW (1996) Diazotrophic endophytes: progress and prospects for nitrogen fixation in monocots. Plant Soil 186:29–38

    Article  CAS  Google Scholar 

  • Whitesides SK, Spotts RA (1991) Frequency, distribution, and characteristics of endophytic Pseudomonas syringae in pear trees. Phytopathology 81:453–457

    Google Scholar 

  • Wilson D (1995) Endophyte: the evolution of a term, and clarification of its use and definition. Oikos 73:274–276

    Article  Google Scholar 

  • Zak B (1971) Characterization and classification of mycorrhizae of Douglas fir. II. Pseudotsuga menziesii + Rhizopogon vinicolor. Can J Bot 49:1079–1084

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Anand, R., Paul, L., Chanway, C. (2006). Research on Endophytic Bacteria: Recent Advances with Forest Trees. In: Schulz, B.J.E., Boyle, C.J.C., Sieber, T.N. (eds) Microbial Root Endophytes. Soil Biology, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-33526-9_6

Download citation

Publish with us

Policies and ethics