Skip to main content

Characterising Porous Media

  • Chapter
Novel NMR and EPR techniques

Part of the book series: Lecture Notes in Physics ((LNP,volume 684))

Abstract

The method of Nuclear Magnetic Resonance cryoporometry has gained popularity since its inception in 1993 as a non-destructive technique for measuring pore size distributions in the nano-scale range. NMR cryoporometry is a secondary method of measuring pore sizes by observation of the depressed melting point of a confined liquid. The melting point depression constant of the absorbate has to be determined empirically although this constant is only a function of the absorbed liquid and its associated solid, not the porous matrix. Cryoporometry has the major advantage of offering, with care, directly calibrated measurements of pore volume as a function of pore diameter, of non-destructive pore measurement, structural resolution of spatially dependent pore size distributions, and behavioural information about the confined liquid. This chapter focuses on the history of NMR cryoporometry, the basic equipment required to run an experiment, and highlights some of the major results that have been achieved by various research groups around the world using this technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. W. Gibbs: The Scientific Papers of J. Willard Gibbs, volume 1:Thermodynamics, new dover edition (Dover Publications Inc., Constable and Co., New York, London 1906)

    Google Scholar 

  2. J. W. Gibbs: Collected Works (Longmans, Green and Co., New York 1928)

    MATH  Google Scholar 

  3. J. Thomson: Trans. Roy. Soc. xi, (1849)

    Google Scholar 

  4. J. Thomson: Proc. Roy. Soc. xi, (1862)

    Google Scholar 

  5. J. J. Thomson: Application of Dynamics to Physics and Chemistry (Macmillan & Co., London 1888)

    Google Scholar 

  6. W. Thomson: Phil. Mag., Ser. 4 42, 282 (1871)

    Google Scholar 

  7. C. L. Jackson, G. B. McKenna: J. Chem. Phys. 93, 12 (1990)

    Article  Google Scholar 

  8. J. H. Strange, M. Rahman, E. G. Smith: Phys. Rev. Lett. 71, 21 (1993)

    Article  Google Scholar 

  9. H. A. Resing, J. K. Thompson, J. J. Krebs: J. Phys. Chem. 68, 7 (1964)

    Article  Google Scholar 

  10. H. A. Resing: J. Chem. Phys. 43, 2 (1965)

    Article  Google Scholar 

  11. R. T. Pearson, W. Derbyshire: J. Colloid Interf. Sci. 46, 2 (1973)

    Google Scholar 

  12. E. W. Hansen, M. Stocker, R. Schmidt: J. Chem. Phys. 100, 6 (1996)

    Google Scholar 

  13. H. F. Booth, J. H. Strange: Molec. Phys. 93, 2 (1997)

    Google Scholar 

  14. J. Mitchell, J. H. Strange: Molec. Phys. In Press, (2004)

    Google Scholar 

  15. K. Overloop, L. v. Gervan: J. Magn. Reson. Ser. A 101, (1993)

    Google Scholar 

  16. E. P. Barrett, L. G. Joyner, P. P. Halenda: J. Am. Chem. Soc. 73, (1951)

    Google Scholar 

  17. J. B. W. Webber: Characterising Porous Media. PhD Thesis Thesis, University of Kent, Canterbury (2000).

    Google Scholar 

  18. J. Mitchell: A Study of the Modified Behaviour of Organic Macromolecules in Confined Geometry. PhD Thesis, University of Kent, Canterbury (2003).

    Google Scholar 

  19. J. H. Strange, J. B. W. Webber, S. D. Schmidt: Magn. Reson. Imaging 14, 7/8 (1996)

    Google Scholar 

  20. J. H. Strange, J. B. W. Webber: Appl. Magn. Reson. 12, 2–3 (1997)

    Article  Google Scholar 

  21. J. H. Strange, J. B. W. Webber: Meas. Sci. Technol. 8, 1–7 (1997)

    Article  Google Scholar 

  22. E. L. Hahn: Physics Today 4, November (1953)

    Google Scholar 

  23. E. L. Hahn: Phys. Rev. 80, 4 (1956)

    Google Scholar 

  24. H. Y. Carr, E. M. Purcell: Phys. Rev. 94, (1954)

    Google Scholar 

  25. S. Meiboom, D. Gill: Rev. Sci. Instrum. 29, (1958)

    Google Scholar 

  26. J. Y. Jehng, D. T. Sprague, W. P. Halperin: Magn. Reson. Imaging 14, 7/8 (1996)

    Google Scholar 

  27. E. W. Hansen, R. Schmidt, M. Stöcker: J. Phys. Chem. 100, (1996)

    Google Scholar 

  28. S. Stapf, R. Kimmich: J. Chem. Phys. 103, 6 (1995)

    Article  Google Scholar 

  29. S. G. Allen, P. C. L. Stephenson, J. H. Strange: J. Chem. Phys. 108, 19 (1998)

    Article  Google Scholar 

  30. J. B. W. Webber, J. H. Strange, J. C. Dore: Magn. Reson. Imaging 19, 3–4 (2001)

    Article  Google Scholar 

  31. M. O. Norris, J. H. Strange: J. Phys. E 2, 2 (1969)

    Article  Google Scholar 

  32. J. H. Strange, J. Mitchell, J. B. W. Webber: Magn. Reson. Imaging 21, 3–4 (2003)

    Google Scholar 

  33. R. M. E. Valckenborg, L. Pel, K. Kopinga: J. Phys. D: Appl. Phys. 35, (2002)

    Google Scholar 

  34. A. V. Filippov, V. D. Skirda: Colloid Journal 62, 6 (2000)

    Article  Google Scholar 

  35. R. Valiullin, I. Furo: J. Chem. Phys. 116, 3 (2002)

    Article  Google Scholar 

  36. S. M. Alnaimi, J. Mitchell, J. H. Strange et al.: J. Chem. Phys. 120, 2075 (2004)

    Article  ADS  Google Scholar 

  37. S. Bhattacharja, M. Moukwa, F. D’Orazio et al.: Advanced Cement Based Materials 1, (1993)

    Google Scholar 

  38. J. H. Strange, L. Betteridge, M. J. D. Mallett: Characterisation of Porous Media by NMR. In: NATO ASI series II: Mathematics, Physics and Chemistry, vol Magnetic Resonance in Colloid and Interface Science, ed by J. Fraissard (Kluwer Academic Publishers, Dordrecht 2002)

    Google Scholar 

  39. S. M. Alnaimi, J. H. Strange, E. G. Smith: Magn. Reson. Imaging 12, 2 (1994)

    Article  Google Scholar 

  40. S. G. Allen, P. C. L. Stephenson, J. H. Strange: J. Chem. Phys. 106, 18 (1997)

    Article  Google Scholar 

  41. J. R. Zimmerman, W. E. Brittin: J. Phys. Chem. 61, (1957)

    Google Scholar 

  42. K. R. Brownstein, C. E. Tarr: J. Magn. Reson. 26, (1977)

    Google Scholar 

  43. K. R. Brownstein, C. E. Tarr: Phys. Rev. A 19, 6 (1979)

    Article  Google Scholar 

  44. R. J. S. Brown, I. Fatt: Petroleum T. AIME 207, (1956)

    Google Scholar 

  45. J. J. Tessier, K. J. Packer, J. F. Thovert et al.: AICHE J. 43, 7 (1997)

    Article  Google Scholar 

  46. S. Godfrey, J.-P. Korb, M. Fleury et al.: Magn. Reson. Imaging 19, (2001)

    Google Scholar 

  47. G. C. Borgia, E. Mesini, P. Fantazzini: J. Appl. Phys. 70, 12 (1991)

    Article  Google Scholar 

  48. P. J. Barrie: Ann. R. NMR S. 41, (2000)

    Google Scholar 

  49. W. G. Anderson: J. Petrol. Technol. 38, 11 (1986)

    Google Scholar 

  50. F. A. L. Dullien: Porous Media. Fluid Transport and Pore Structure (Academic Press, London 1979)

    Google Scholar 

  51. M. H. Cohen, K. S. Mendelson: J. Appl. Phys. 53, 2 (1982)

    Google Scholar 

  52. R. J. S. Brown, G. C. Borgia, P. Fantazzini et al.: Magn. Reson. Imaging 9, (1991)

    Google Scholar 

  53. T. Zavada, S. Stapf, U. Beginn et al.: Magn. Reson. Imaging 16, 5/6 (1998)

    Google Scholar 

  54. J.-P. Korb, M. Whaley-Hodges, T. Gobron et al.: Phys. Rev. E 60, 3 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Strange, J., Mitchell, J. (2006). Characterising Porous Media. In: Dolinšek, J., Vilfan, M., Žumer, S. (eds) Novel NMR and EPR techniques. Lecture Notes in Physics, vol 684. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-32627-8_13

Download citation

Publish with us

Policies and ethics