Skip to main content

3.0 T MR Spectroscopy

  • Chapter
High Field Brain MRI

6.5 Conclusions

The utilization of high-field MR systems for clinical spectroscopy studies involves a variety of improvements and advantages which anable the use of new and advanced acquisition techniques that raise the diagnostic accuracy of MR spectroscopy above the desired threshold. At the same time, the higher field strength can also carry disadvantages and limitations that may degrade its usefulness. At the time of the introduction of clinical 3.0 T scanners, results were often unsatisfactory and performances for some applications were poorer than those obtained with the well-optimized clinical 1.5 T scanners. However, most problems with 3 T systems have been or are being addressed by the research community and the manufacturers with the development of sophisticated technical strategies, pulse sequences and/or processing algorithms.

Higher field strength will improve MR imaging thanks to the greater SNR, but will also experience some image degradation due to the increased frequency distance between fat and water. By contrast, MR spectroscopy will gain from both the increased SNR and the increased spectral resolution. Thus spectroscopy is and will be one of the key applications of MR systems with field strength of 3.0 T and above, despite the current problems. The various strategies illustrated above should allow these problems to be overcome and make higher magnetic field scanners the workhorse for all brain MR applications in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Smith ICP, Stewart LC (2002) Magnetic resonance spectroscopy in medicine: clinical impact. Progr Nucl Magn Reson Spectroscopy 40(1):1–34

    Article  CAS  Google Scholar 

  2. Bonavita S, Di Salle F, Tedeschi G (1999) Proton MRS in neurological disorders. Eur J Radiol 30(2):125–131

    Article  PubMed  CAS  Google Scholar 

  3. Ross B, Bluml S (2001) Magnetic resonance spectroscopy of the human brain. Anat Rec 265(2):54–84

    Article  PubMed  CAS  Google Scholar 

  4. Burtscher IM, Holtås S (2001) Proton MR spectroscopy in clinical routine. J Magn Reson Imaging 13(5):732–737

    Google Scholar 

  5. Grodd W, Krageloh-Mann I, et al. (1990) In vivo assessment of N-acetylaspartate in brain spongy degeneration (Canavan’s disease) by proton spectroscopy. Lancet 336:437–438

    Article  PubMed  CAS  Google Scholar 

  6. Stöckler S, Hanefeld F, Frahm J (1996) Creatine replacement therapy in guanidinoacetate methyltransferase deficiency, a novel inborn error of metabolism. Lancet 348:789–790

    Article  PubMed  Google Scholar 

  7. Bianchi MC, Tosetti M, Fornai F, et al. (2000) Reversible brain creatine deficiency in two sisters with normal blood creatine level. Ann Neurol 47:511–513

    Article  PubMed  CAS  Google Scholar 

  8. Kruse B, Barker PB, Van Zijl PC, et al. (1994) Multislice proton magnetic resonance spectroscopic imaging in X-linked adrenoleukodystrophy. Ann Neurol 36:595–608

    Article  PubMed  CAS  Google Scholar 

  9. Ross BD, Jacobson S, Villamil F, et al. (1994) Subclinical hepatic encephalopathy: proton MR spectroscopic abnormalities. Radiology 193:457–463

    PubMed  CAS  Google Scholar 

  10. Guidance for significant risk investigations. US CDRH, FDA, DHHS. September 29, 1997

    Google Scholar 

  11. Takahashi M, Uematsu H, Hatabu H (2003) MR imaging at high magnetic fields. Eur J Radiol 46(1):45–52

    Article  PubMed  Google Scholar 

  12. Kangarlu A, Burgess RE, Zhu H, et al. (1999) Cognitive, cardiac, and physiological safety studies in ultra high field magnetic resonance imaging. Magn Reson Imaging 17(10):1407–1416

    Article  PubMed  CAS  Google Scholar 

  13. Vaughan JT, Garwood M, Collins CM, et al. (2001) 7T vs 4T: RF power, homogeneity and signal-to-noise comparison in head images. Magn Reson Med 46(1):24–30

    Article  PubMed  CAS  Google Scholar 

  14. Uematsu H, Dougherty L, Takahashi M, et al. (2003) A direct comparison of signal behavior between 4.0 and 1.5 T: a phantom study. Eur J Radiol 45(2):154–159

    Article  PubMed  Google Scholar 

  15. Posse S, Cuenod CA, Risinger R, et al. (1995) Anomalous transverse relaxation in 1H spectroscopy in human brainat 4 Tesla. Magn Reson Med 33(2): 246–252

    PubMed  Google Scholar 

  16. Gruetter R, Weisdorf SA, Rajanayagan V, et al. (1998) Resolution improvements in in vivo 1H NMR spectra with increased magnetic field strength. J. Magn Reson 135(1): 260–264

    Article  PubMed  CAS  Google Scholar 

  17. Bartha R, Drost DJ, Menon RS, Williamson PC (2000) Comparison of the quantification precision of human short echo time 1H spectroscopy at 1.5 and 4.0 Tesla. Magn Reson Med 44(2):185–192

    Article  PubMed  CAS  Google Scholar 

  18. Gonen O, Gruber S, Li BSY, et al. (2001) Multivoxel 3D proton spectroscopy in the brain at 1.5 versus 3.0 T: signal-to-noise ratio and resolution comparison. Am J Neuroradiol 22(9):1727–1731

    PubMed  CAS  Google Scholar 

  19. Barker PB, Hearshen DO, Boska MD (2001) Single-voxel proton MRS of the human brain at 1.5T and 3.0T. Magn Reson Med 45(5):765–769

    Article  PubMed  CAS  Google Scholar 

  20. Ocali O, Atalar E (1998) Ultimate intrinsic signal-to-noise ratio in MRI. Magn Reson Med 39(3):462–473

    PubMed  CAS  Google Scholar 

  21. Tká I, Andersen P, Adriany G, et al. (2001) In vivo 1H NMR spectroscopy of the human brain at 7 T. Magn Reson Med 46(3):451–456

    Article  Google Scholar 

  22. Hetherington HP, Pan JW, Chu WJ, et al. (1997) Biological and clinical MRS at ultra-high field. NMR Biomed 10(8):360–371

    Article  PubMed  CAS  Google Scholar 

  23. Gruber S, Mlynárik V, Moser E (2003) High-resolution 3D proton spectroscopic imaging of the human brain at 3 T: SNR issues and application for anatomy-matched voxel sizes. Magn Reson Med 49(2):299–306

    Article  PubMed  CAS  Google Scholar 

  24. Li BSY, Regal J, Gonen O (2001) SNR versus resolution in 3D 1H MRS of the human brain at high magnetic fields. Magn Reson Med 46(6):1049–1053

    Article  PubMed  CAS  Google Scholar 

  25. Kim DS, Garwood M (2003) High-field magnetic resonance techniques for brain research. Curr Opin Neurobiol 13(5):612–619

    Article  PubMed  CAS  Google Scholar 

  26. Cusack R, Brett M, Osswald K (2003) An evaluation of the use of magnetic field maps to undistort echo-planar images. Neuroimage 18(1):127–142

    Article  PubMed  Google Scholar 

  27. Stenger VA, Boada FE, Noll DC (2000) Three-dimensional tailored RF pulses for the reduction of susceptibility artifacts in T⋆2-weighted functional MRI. Magn Reson Med 44(4):525–531

    Article  PubMed  CAS  Google Scholar 

  28. Alecci M, Collins CM, Smith MB, Jezzard P (2001) Radio frequency magnetic field mapping of a 3 Tesla birdcage coil: experimental and theoretical dependence on sample properties. Magn Reson Med 46(2):379–385

    Article  PubMed  CAS  Google Scholar 

  29. Pfeuffer J, Tká I, Provencher SW, Gruetter R (1999) Toward an in vivo neurochemical profile: quantification of 18 metabolites in short-echo-time 1H NMR spectra of the rat brain. J Magn Reson 141(1):104–120

    Article  PubMed  CAS  Google Scholar 

  30. Gu H, Feng H, Zhan W, et al. (2002) Single-shot interleaved z-shim EPI with optimized compensation for signal losses due to susceptibility-induced field inhomogeneity at 3 T. Neuroimage 17(3):1358–1364

    Article  PubMed  Google Scholar 

  31. Klose U (1990) In vivo proton spectroscopy in presence of eddy currents. Magn Reson Med 14(1):26–30

    PubMed  CAS  Google Scholar 

  32. Gach HM, Lowe IJ, Madio DP, et al. (1998) A programmable pre-emphasis system. Magn ResonMed 40(3):427–431

    CAS  Google Scholar 

  33. Mlynárik V, Gruber S, Moser E (2001) Proton T1 and T2 relaxation times of human brain metabolites at 3 Tesla. NMR Biomed 14(5):325–331

    Article  PubMed  Google Scholar 

  34. Michaeli S, Garwood M, Zhu XH, et al. (2002) Proton T2 relaxation study of water, N-acetylaspartate, and creatine in human brain using Hahn and Carr-Purcell spin echoes at 4T and 7T. Magn Reson Med 47(4):629–633

    Article  PubMed  CAS  Google Scholar 

  35. Parizel PM, van Hasselt BA, van den Hauwe L, et al. (1994) Understanding chemical shift induced boundary artefacts as a function of field strength: influence of imaging parameters (bandwidth, field-of-view, and matrix size). Eur J Radiol 18(3):158–164

    Article  PubMed  CAS  Google Scholar 

  36. Hood MN, Ho VB, Smirniotopoulos JG, Szumowski J (1999) Chemical shift: the artifact and clinical tool revisited. Radiographics 19(2):357–371

    PubMed  CAS  Google Scholar 

  37. Kelley DAC, Wald LL, Star-Lack JM (1999) Lactate detection at 3T: compensating J coupling effects with BASING. J Magn Reson Imaging 9(5):732–737

    Article  PubMed  CAS  Google Scholar 

  38. Thiel T, Czisch M, Elbel GK, Hennig J (2002) Phase coherent averaging in magnetic resonance spectroscopy using interleaved navigator scans: compensation of motion artifacts and magnetic field instabilities. Magn Reson Med 47(6):1077–1082

    Article  PubMed  Google Scholar 

  39. Zhang X, Uurbil K, Chen W (2001) Microstrip RF surface coil design for extremely high-field MRI and spectroscopy. Magn Reson Med 46(3):443–450

    Article  PubMed  CAS  Google Scholar 

  40. Alecci M, Collins CM, Wilson J, et al. (2003) Theoretical and experimental evaluation of detached endcaps for 3 T birdcage coils. Magn Reson Med 49(2):363–370

    Article  PubMed  Google Scholar 

  41. Wright AC, Song HK, Wehrli FW (2001) In vivo MR micro imaging with conventional radiofrequency coils cooled to 77 degrees K. Magn Reson Med 43(2):163–169

    Article  Google Scholar 

  42. Mlynárik V, Gruber S, Moser E (2001) Proton T1 and T2 relaxation times of human brain metabolites at 3 Tesla. NMR Biomed 14(5):325–331

    Article  PubMed  Google Scholar 

  43. Rothman DL, Petroff OAC, Behar KL, Mattson RH (1993) Localized 1H NMR measurement of γ-aminobutyric acid in human brain in vivo. Proc Natl Acad Sci USA 90:5662–5666

    Article  PubMed  CAS  Google Scholar 

  44. Keltner JR, Wald LL, Christensen JD, et al. (1996) A technique for detecting GABA in the human brain with PRESS localization and optimized refocusing spectral editing radiofrequency pulses. Magn Reson Med 36:458–461

    Article  PubMed  CAS  Google Scholar 

  45. Hetherington HP, Newcomer BR, Pan JW (1998) Measurement of human cerebral GABA at 4.1 T using numerically optimized editing pulses. Magn Reson Med 39:6–10

    PubMed  CAS  Google Scholar 

  46. Mescher M, Merkle H, Kirsch J, et al. (1998) Simultaneous in vivo spectra editing and water suppression. NMR Biomed 11:266–272

    Article  PubMed  CAS  Google Scholar 

  47. Henry PG, Dautry C, Hantraye P, Bloch G (2001) Brain GABA editing without macromolecule contamination. Magn Reson Med 45(3):517–520

    Article  PubMed  CAS  Google Scholar 

  48. Ke Y, Cohen BM, Bang JY, et al. (2000) Assessment of GABA concentration in human brain using two-dimensional proton magnetic resonance spectroscopy. Psychiatr Res 100:169–178

    CAS  Google Scholar 

  49. de Graaf RA, Rothman DL (2001) Detection of gamma-aminobutyric acid (GABA) by longitudinal scalar order difference editing. J Magn Reson 152(1):124–131

    Article  PubMed  CAS  Google Scholar 

  50. Keltner JR, Wald LL, Frederick B, Renshaw P (1997) In vivo detection of GABA in human brain using a localized double-quantum filter technique. Magn Reson Med 37:366–371

    PubMed  CAS  Google Scholar 

  51. Shen J, Shungu DC, Rothman DL (1999) In vivo chemical shift imaging of γ-aminobutyric acid in the human brain. Magn Reson Med 41:35–42

    Article  PubMed  CAS  Google Scholar 

  52. Hurd R, Sailasuta N, Srinivasan R, et al. (2004) Measurement of brain glutamate using TE-averaged PRESS at 3T. Magn Reson Med 51(3):435–440

    Article  PubMed  CAS  Google Scholar 

  53. Hancu I, Zimmerman EA, Sailasuta N, Hurd RE (2005) 1H MR spectroscopy using TE averaged PRESS: a more sensitive technique to detect neurodegeneration associated with Alzheimer’s disease. Magn Reson Med 53(4):777–782

    Article  PubMed  CAS  Google Scholar 

  54. Srinivasan R, Sailasuta N, Hurd R, et al. (1994) Evidence of elevated glutamate in multiple sclerosis using magnetic resonance spectroscopy at 3 T. Brain 128(5):1016–1025

    Article  Google Scholar 

  55. Posse S, DeCarli C, Le Bihan D (1994) Three-dimensional echo-planar MR spectroscopic imaging at short echo times in the human brain. Radiology 192(3):733–738

    PubMed  CAS  Google Scholar 

  56. Guimaraes AR, Baker JR, Jenkins BG, et al. (1999) Echoplanar chemical shift imaging. Magn ResonMed 41(5):877–882

    Article  CAS  Google Scholar 

  57. Adalsteinsson E, Spielman DM (1999) Spatially resolved two-dimensional spectroscopy. Magn Reson Med 41(1):8–12

    Article  PubMed  CAS  Google Scholar 

  58. Dydak U, Pruessmann KP, Weiger M, et al. (2003) Parallel spectroscopic imaging with spin-echo trains. Magn Reson Med 50(1):196–200

    Article  PubMed  CAS  Google Scholar 

  59. Dydak U, Weiger M, Pruessmann KP, et al. (2001) Sensitivity-Encoded Spectroscopic Imaging. Magn Reson Med 46:713–722

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tosetti, M., Schirmer, T., d’Alesio, V., Di Costanzo, A., Scarabino, T. (2006). 3.0 T MR Spectroscopy. In: Salvolini, U., Scarabino, T. (eds) High Field Brain MRI. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-31776-7_6

Download citation

  • DOI: https://doi.org/10.1007/3-540-31776-7_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-31775-3

  • Online ISBN: 978-3-540-31776-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics