Skip to main content

Quantum Transport in Carbon Nanotubes

  • Chapter
Introducing Molecular Electronics

Part of the book series: Lecture Notes in Physics ((LNP,volume 680))

Abstract

We present a tutorial introduction into the structure and electronic properties of carbon nanotubes which may serve as an entry point into the literature on the field. Some of the original experiments in the field are selected to illustrate the richness of quantum transport in single-and multi-wall carbon nanotubes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl, and R. E. Smalley: C60: Buckminsterfullerene, Nature 318, 162 (1985).

    Article  ADS  Google Scholar 

  2. D. Ugarte: Curling and closure of graphitic networks under electron-beam irradiation, Nature 359, 707 (1992).

    Article  ADS  Google Scholar 

  3. S. Iijima: Helical microtubules of graphitic carbon, Nature 354, 56 (1991).

    Article  ADS  Google Scholar 

  4. H. Terrones, M. Terrones: Beyond C60: Graphite structures for the future, Chem. Soc. Rev. 24, 341 (1995).

    Article  Google Scholar 

  5. M. S. Dresselhaus, G. Dresselhaus, and Ph. Avouris: Carbon nanotubes: Synthesis, Structure Properties and Applications (Springer-Verlag, Berlin, 2001).

    Book  Google Scholar 

  6. J.-P. Salvetat, G. A. D. Briggs, J.-M. Bonard, R. R. Bacsa, A. J. Kulik, T. Stöckli, N. A. Burnham, and L. Forró: Elastic and Shear Moduli of Single-Walled Carbon Nanotube Ropes, Phys. Rev. Lett. 82, 944 (1999).

    Article  ADS  Google Scholar 

  7. Ph. Avouris: Carbon nanotube electronics, Chem. Phys. 281, 429 (2002).

    Article  ADS  Google Scholar 

  8. R. Saito, G. Dresselhaus, and M. S. Dresselhaus: Physical Properties of Carbon Nanotubes (Imperial College Press, London, 1998).

    Book  Google Scholar 

  9. R. H. Baughman, A. A. Zakhidov, and W. A. de Heer: Carbon Nanotubes-the Route Toward Applications, Science 297, 787 (2002).

    Article  ADS  Google Scholar 

  10. J. W. Mintmire and C. T. White: Electronic and structural properties of carbon nanotubes, Carbon 33, 893 (1995).

    Article  Google Scholar 

  11. A. Jorio, R. Saito, J. H. Hafner, C. M. Lieber, M. Hunter, T. McClure, G. Dresselhaus, and M. S. Dresselhaus: Structural ( n, m) Determination of Isolated Single-Wall Carbon Nanotubes by Resonant Raman Scattering, Phys. Rev. Lett. 86, 1118 (2001).

    Article  ADS  Google Scholar 

  12. Image gallery of R. E. Smalley: http://smalley.rice.edu/.

    Google Scholar 

  13. S. Iijima and T. Ichihashi: Single-shell carbon nanotubes of 1-nm diameter, Nature 363, 603 (1993).

    Article  ADS  Google Scholar 

  14. L.-C. Qin, S. Iijima, H. Kataura, Y. Maniwa, S. Suzuki, and Y. Achiba: Helicity and packing of single-walled carbon nanotubes studied by electron nanodiffraction, Chem. Phys. Lett. 268, 101 (1997).

    Article  ADS  Google Scholar 

  15. J. M. Cowley, P. Nikolaev, A. Thess, and R. E. Smalley: Electron nanodiffraction study of carbon single-walled nanotube ropes, Chem. Phys. Lett. 265, 379 (1997).

    Article  ADS  Google Scholar 

  16. M. Kociak, K. Suenaga, K. Hirahara, Y. Saito, T. Nakahira, and S. Iijima: Linking Chiral Indices and Transport Properties of Double-Walled Carbon Nanotubes, Phys. Rev. Lett. 89, 155501 (2002).

    Article  ADS  Google Scholar 

  17. J.-F. Colomer, L. Henrard, Ph. Lambin, and G. Van Tendeloo: Electron diffraction study of small bundles of single-wall carbon nanotubes with unique helicity, Phys. Rev. B 64, 125425 (2001).

    Article  ADS  Google Scholar 

  18. S. Amelinckx, A. Lucas, and Ph. Lambin: Electron diffraction and microscopy of nanotubes, Rep. Prog. Phys. 62, 1471 (1999).

    Article  ADS  Google Scholar 

  19. T. W. Odom, J.-L. Huang, P. Kim, and C. M. Lieber: Atomic structure and electronic properties of single-walled carbon nanotubes, Nature 391, 62 (1998).

    Article  ADS  Google Scholar 

  20. J. W. G. Wildöer, L. C. Venema, A. G. Rinzler, R. E. Smalley, and C. Dekker: Electronic structure of atomically resolved carbon nanotubes, Nature 391, 59 (1998).

    Article  ADS  Google Scholar 

  21. Ch. Kramberger, R. Pfeiffer, H. Kuzmany, V. Zolyomi, and J. Kurti: Assignment of chiral vectors in carbon nanotubes, Phys. Rev. B 68, 235404 (2003).

    Article  ADS  Google Scholar 

  22. S. B. Cronin, R. Bamett, M. Tinkham, S. G. Chou, O. Rabin, M. S. Dresselhaus, A. K. Swan, M. S. Ünlü, and B. B. Golberg: Electrochemical gating of individual single-wall carbon nanotubes observed by electron transport measurements and resonant Raman spectroscopy, Appl. Phys. Lett. 84, 2052 (2004).

    Article  ADS  Google Scholar 

  23. X. B. Zhang, X. F. Zhang, S. Amelinckx, G. Van Tendeloo, and J. Van Landuyt: The reciprocal space of carbon tubes: a detailed interpretation of the electron diffraction effects, Ultramicroscopy 54, 237 (1994).

    Article  Google Scholar 

  24. X. F. Zhang, X. B. Zhang, G. Van Tendeloo, S. Amelinckx, M. Op. de Beek, and J. Van Landuyt: Carbon nano-tubes; their formation process and observation by electron microscopy, J. Cryst. Growth 130, 368 (1993).

    Article  ADS  Google Scholar 

  25. X. B. Zhang and S. Amelinckx: On the measurements of the helix angles of carbon nanotubes, Carbon 32, 1537 (1994).

    Article  Google Scholar 

  26. M. Gao, M. Zuo, R. D. Twesten, I. Petrov, L. A. Nagahara, and R. Zhang: Structure determination of individual single-wall carbon nanotubes by nanoarea electron diffraction, App. Phys. Lett. 82, 2703 (2003).

    Article  ADS  Google Scholar 

  27. Ph. Lambin, A. Loiseau, C. Culot, and L. P. Biro: Structure of carbon nanotubes probed by local and global probes, Carbon 40, 1635 (2002).

    Article  Google Scholar 

  28. C. T. White, D. H. Robertson, and J. W. Mintmire: Helical and rotational symmetries of nanoscale graphitic tubules, Phys. Rev. B 47, 5485 (1993).

    Article  ADS  Google Scholar 

  29. T. W. Odom, J.-L. Huang, P. Kim, and C. M. Lieber: Structure and Electronic Properties of Carbon Nanotubes, J. Phys. Chem. B 104, 2794 (2000).

    Article  Google Scholar 

  30. R. Saito, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus: Electronic structure of graphene tubules based on C60, Phys. Rev. B 46, 1804 (1992).

    Article  ADS  Google Scholar 

  31. Ch. Zhou, J. Kong, and H. Dai: Intrinsic Electrical Properties of Individual Single-Walled Carbon Nanotubes with Small Band Gaps, Phys. Rev. Lett. 84, 5604 (2000).

    Article  ADS  Google Scholar 

  32. M. Ouyang, J.-L. Huang, C. L. Cheung, and C. M. Lieber: Energy Gaps in “Metallic” Single-Walled Carbon Nanotubes, Science 292, 702 (2001).

    Article  ADS  Google Scholar 

  33. A. Bachtold, M. S. Fuhrer, S. Plyasunov, M. Forero, E. H. Anderson, A. Zettl, and P. L. McEuen: Scanned Probe Microscopy of Electronic Transport in Carbon Nanotubes, Phys. Rev. Lett. 84, 6082 (2000).

    Article  ADS  Google Scholar 

  34. P. J. de Pablo, C. Gómez-Navarro, J. Colchero, P. A. Serena, J. G4oAmez-Herrero, and A. M. Baró: Nonlinear Resistance versus Length in Single-Walled Carbon Nanotubes, Phys. Rev. Lett. 88, 036804 (2002).

    Article  ADS  Google Scholar 

  35. P. Kim, T. W. Odom, J.-L. Huang, and C. M. Lieber: Electronic Density of States of Atomically Resolved Single-Walled Carbon Nanotubes: Van Hove Singularities and End States, Phys. Rev. Lett. 82, 1225 (1999).

    Article  ADS  Google Scholar 

  36. L. C. Venema, J. W. G. Wildöer, J. W. Janssen, S. J. Tans, H. L. J. Temminck Tuinstra, L. P. Kouwenhoven, and C. Dekker: Imaging Electron Wave Functions of Quantized Energy Levels in Carbon Nanotubes, Science 283, 52 (1999).

    Article  ADS  Google Scholar 

  37. S. Datta, Electronic Transport in Mesoscopic Systems (Cambridge University Press, Cambridge 1995).

    Google Scholar 

  38. W. Liang, M. Bockrath, D. Bozovic, J. H. Hafner, M. Tinkham, and H. Park: Fabry - Perot interference in a nanotube electron waveguide, Nature 411, 665 (2001).

    Article  ADS  Google Scholar 

  39. S. Frank, P. Poncharal, Z. L. Wang, and W. A. de Heer: Carbon Nanotube Quantum Resistors, Science 280, 1744 (1998).

    Article  ADS  Google Scholar 

  40. A. Urbina, I. Echeverria, A. Perez-Garrido, A. Dias-Sanchez, and J. Abellan: Quantum Conductance Steps in Solutions of Multiwalled Carbon Nanotubes, Phys. Rev. Lett. 90, 106603 (2003).

    Article  ADS  Google Scholar 

  41. B. J. van Wees, H. van Houten, C. W. J. Beenakker, J. G. Williamson, L. P. Kouwenhoven, D. van der Marel, and C. T. Foxon: Quantized conductance of point contacts in a two-dimensional electron gas, Phys. Rev. Lett. 60, 848 (1988).

    Article  ADS  Google Scholar 

  42. A. Wharam, T. J. Thornton, R. Newbury, M. Pepper, H. Ahmed, J. E. F. Frost, D. G. Hasko, D. C. Peacock, D. A. Ritchie, and G. A. C. Jones: Onedimensional transport and the quantisation of the ballistic resistance, J. Phys. C 21, L 209 (1988).

    ADS  Google Scholar 

  43. For a review, see e.g.: S. Washburn and R. Webb: Quantum transport in small disordered samples from the diffusive to the ballistic regime, Rep. Prog. Phys. 55, 1311 (1992).

    Article  ADS  Google Scholar 

  44. H. Ajiki and T. Ando: Electronic States of Carbon Nanotubes, Phys. Soc. of Jpn 62, 1255 (1993).

    Article  ADS  Google Scholar 

  45. S. Roche and R. Saito: Magnetoresistance of Carbon Nanotubes: From Molecular to Mesoscopic Fingerprints, Phys. Rev. Lett. 87, 246803 (2001).

    Article  ADS  Google Scholar 

  46. C. Schönenberger, A. Bachtold, C. Strunk, J. P. Salvetat, L. Forró: Interference and Interaction in multi-wall carbon nanotubes, App. Phys. A 69, 283 (1999).

    Article  ADS  Google Scholar 

  47. L. Langer, V. Bayot, E. Grivei, J. P. Issi, J. P. Heremans, C. H. Olk, L. Stockman, C. Van Haesendonck, and Y. Bruynseraede: Quantum Transport in a Multiwalled Carbon Nanotube, Phys. Rev. Lett. 76, 479 (1996).

    Article  ADS  Google Scholar 

  48. K. Liu, S. Roth, G. S. Düsberg, G. T. Kim, D. Popa, K. Mkhopadhyay, R. Doome, and J. B. Nagy: Antilocalization in multiwalled carbon nanotubes, Phys. Rev. B 61 2375 (2000).

    Article  ADS  Google Scholar 

  49. K. Liu, Ph. Avouris, R. Martel, and W. K. Hsu: Electrical transport in doped multiwalled carbon nanotubes, Phys. Rev. B 63, 161404 (2001).

    Article  ADS  Google Scholar 

  50. R. Tarkiainen, M. Ahlskog, J. Penttilä, L. Roschier, P. Hakonen, M. Paalanen, and E. Sonin: Multiwalled carbon nanotube: Luttinger versus Fermi liquid, Phys. Rev. B 64, 195412 (2001).

    Article  ADS  Google Scholar 

  51. P. A. Lee, T. V. Ramakrishnan: Disordered electronic systems, Rev. Mod. Phys 57, 287 (1985).

    Article  ADS  Google Scholar 

  52. B. L. Altshuler and A. G. Aronov: Magnetoresistance of thin films and of wires in a longitudinal magnetic field, JETP Lett. 33 499 (1981).

    ADS  Google Scholar 

  53. M. Buitelaar: Electron Transport in Multiwall Carbon Nanotubes, Dissertation, University of Basel (2002).

    Google Scholar 

  54. J.-Y Park, S. Rosenblatt, Y. Yaish, V. Sazonova, H. Üstünel, S. Braig, T. A. Arias, P. W. Brouwer, and P. L. McEuen: Electron-Phonon Scattering in Metallic Single-Walled Carbon Nanotubes, Nano Lett. 4, 517 (2004).

    Article  ADS  Google Scholar 

  55. B. L. Altshuler, A. G. Aronov, and D. E. Khmelnitzkii: Suppression of localization effects by the high frequency field and the nyquist noise, Solid State Communications 39, 619 (1981).

    Article  ADS  Google Scholar 

  56. B. L. Altshuler, A. G. Aronov, and B. Z. Spivak: The Aaronov-Bohm effect in disordered conductors, Pis'ma Zh. Eksp. Teor. Fiz. 33, 101 (1981), [JETP Lett. 33, 94 (1981)].

    Google Scholar 

  57. Y. Sharvin and Y. V. Sharvin: Magnetic-flux quantization in a cylindrical film of a normal metal, Pis'ma Zh. Eksp. Teor. Fiz. 34, 285 (1981), [JETP Lett. 34, 272 (1981)].

    Google Scholar 

  58. A. Bachtold, C. Strunk, J. P. Salvetat, L. Forró, T. Nussbaumer, and C. Schönenberger: Aharonov-Bohm oscillations in carbon nanotubes, Nature 397, 673 (1999).

    Article  ADS  Google Scholar 

  59. B. Stojetz: Interplay of Bandstructure and Quantum Interference in Multi Wall Carbon Nanotubes, Dissertation, University of Regensburg (2004).

    Google Scholar 

  60. B. Stojetz, C. Miko, L. Forró, C. Strunk: Effect of Band Structure on Quantum Interference in Multiwall Carbon Nanotubes, to be published in Phys. Rev. Lett.

    Google Scholar 

  61. M. Thorwart, M. Grifoni, and R. Egger: Transport through intrinsic quantum dots in interacting carbon nanotubes, in this volume.

    Google Scholar 

  62. For a review see, e.g.: H. Grabert and M. H. Devoret (Edts.), Single Charge tunneling, NATO ASI Series B: 294 (Plenum Press, New York 1992).

    Google Scholar 

  63. S. J. Tans, A. R. M. Verschueren, and C. Dekker: Room-temperature transistor based on a single carbon nanotube, Nature 393, 49 (1998).

    Article  ADS  Google Scholar 

  64. S. J. Tans, M. H. Devoret, H. Dai, A. Thess, R. E. Smalley, L. J. Geerlings, and C. Dekker: Individual single-wall carbon nanotubes as quantum wires, Nature 386, 474 (1997).

    Article  ADS  Google Scholar 

  65. M. R. Buitelaar, A. Bachtold, T. Nussbaumer, M. Iqbal, and C. Schönenberger: Multiwall Carbon Nanotubes as Quantum Dots, Phys. Rev. Lett. 88, 156801 (2002).

    Article  ADS  Google Scholar 

  66. P. Jarillo-Herrero, S. Sapmaz, C. Dekker, L. P. Kouwenhoven, and H. S. J. van der Zant: Electron-hole symmetry in a semiconducting carbon nanotube quantum dot, Nature 429, 389 (2004).

    Article  ADS  Google Scholar 

  67. S. Heinze, J. Tersoff, and Ph. Avouris: Carbon nanotube electronics and optoelectronics, in this volume.

    Google Scholar 

  68. A. Bezryadin, A. R. M. Verschueren, S. J. Tans, and C. Dekker: Multiprobe Transport Experiments on Individual Single-Wall Carbon Nanotubes, Phys. Rev. Lett. 80, 4036 (1998).

    Article  ADS  Google Scholar 

  69. J. Nygard, D. H. Cobden, and P. E. Lindelof: Kondo physics in carbon nanotubes, Nature 408, 342 (2000).

    Article  ADS  Google Scholar 

  70. G. Grüner and A. Zawadowski: Magnetic impurities in non-magnetic metals, Rep. Prog. Phys. 37, 1497 (1974).

    Article  ADS  Google Scholar 

  71. D. Goldhaber-Gordon, H. Shtriktman, D. Mahalu, D. Abusch-Magder, U. Meirav, and M. A. Kastner: Kondo effect in a single-electron transistor, Nature 391, 156 (1998).

    Article  ADS  Google Scholar 

  72. S. M. Cronenwett, T. H. Oosterkamp, and L. P. Kouwenhoven: A Tunable Kondo Effect in Quantum Dots, Science 281, 540 (1998).

    Article  ADS  Google Scholar 

  73. C. V. Haesendonck, J. Vranken, and Y. Bruynseraede: Resonant Kondo Scattering of Weakly Localized Electrons, Phys. Rev. Lett. 58, 1968 (1987).

    Article  ADS  Google Scholar 

  74. R. P. Peters, G. Bergmann, and R. M. Mueller: Kondo Maximum of Magnetic Scattering, Phys. Rev. Lett. 58, 1964 (1987).

    Article  ADS  Google Scholar 

  75. W. G. van der Wiel, S. de Franceschi, T. Fujisawa, J. M. Elzerman, S. Tarucha, and L. P. Kouwenhoven: The Kondo Effect in the Unitary Limit, Science 289, 2105 (2000).

    Article  ADS  Google Scholar 

  76. M. R. Buitelaar, T. Nussbaumer, and C. Schönenberger: Quantum Dot in the Kondo Regime Coupled to Superconductors, Phys. Rev. Lett. 89, 256801 (2002).

    Article  ADS  Google Scholar 

  77. M. R. Buitelaar, W. Belzig, T. Nussbaumer, B. Babic, C. Bruder, and C. Schönenberger: Multiple Andreev Reflections in a Carbon Nanotube Quantum Dot, Phys. Rev. Lett. 91, 057005 (2003).

    Article  ADS  Google Scholar 

  78. A. N. Pasupathy, R. C. Bialczak, J. Martinek, J. E. Grose, L. A. K. Donev, P. L. McEuen, and D. C. Ralph: The Kondo Effect in the Presence of Ferromagnetism, Science 306, 86 (2004).

    Article  ADS  Google Scholar 

  79. R. Egger and A. O. Gogolin: Effective Low-Energy Theory for Correlated Carbon Nanotubes, Phys. Rev. Lett. 79, 5082 (1997).

    Article  ADS  Google Scholar 

  80. C. Kane, L. Balents, and M. A. Fisher: Coulomb Interactions and Mesoscopic Effects in Carbon Nanotubes, Phys. Rev. Lett. 79, 5086 (1997).

    Article  ADS  Google Scholar 

  81. M. Bockrath, D. H. Cobden, A. G. Rinzler, R. E. Smalley, L. Balents, and Paul L. McEuen: Luttinger-liquid behaviour in carbon nanotubes, Nature 397, 598 (1999).

    Article  ADS  Google Scholar 

  82. Z. Yao, H.W.Ch. Postma, L. Balents, and C. Dekker: Carbon nanotube intramolecular junctions, Nature 402, 273 (1999).

    Article  ADS  Google Scholar 

  83. M. P. A. Fisher and A. Dorsey: Dissipative Quantum Tunneling in a Biased Double-Well System at Finite Temperatures, Phys. Rev. Lett. 54, 1609 (1985).

    Article  ADS  Google Scholar 

  84. H. Grabert and U. Weiss: Quantum Tunneling Rates for Asymmetric Double-Well Systems with Ohmic Dissipation, Phys. Rev. Lett. 54, 1605 (1985).

    Article  ADS  Google Scholar 

  85. A. Bachtold, M. de Jonge, K. Grove-Rasmussen, P. L. McEuen, M. Buitelaar, and C. Schönenberger: Suppression of Tunneling into Multiwall Carbon Nanotubes, Phys. Rev. Lett. 87, 166801 (2001).

    Article  ADS  Google Scholar 

  86. W. Yi, L. Lu, H. Hu, Z. W. Pan, and S. S. Xie: Tunneling into Multiwalled Carbon Nanotubes: Coulomb Blockade and the Fano Resonance, Phys. Rev. Lett. 91, 076801 (2003).

    Article  ADS  Google Scholar 

  87. A. Kanda, K. Tsukagoshi, Y. Aoyagi, and Y. Ootuka: Gate-Voltage Dependence of Zero-Bias Anomalies in Multiwall Carbon Nanotubes, Phys. Rev. Lett. 92, 036801 (2004).

    Article  ADS  Google Scholar 

  88. R. Egger: Luttinger Liquid Behavior in Multiwall Carbon Nanotubes, Phys. Rev. Lett. 83, 5547 (1999).

    Article  ADS  Google Scholar 

  89. B. L. Altshuler and A. G. Aronov, Electron-electron Interactions in Disordered Systems, edited by A. L. Efros and M. Pollak (Elsevier, Amsterdam, 1985).

    Google Scholar 

  90. R. Egger and A. O. Gogolin: Bulk and Boundary Zero-Bias Anomaly in Multiwall Carbon Nanotubes, Phys. Rev. Lett. 87, 066401 (2001).

    Article  ADS  Google Scholar 

  91. E. G. Mishchenko, A. V. Andreev, and L. I. Glazman: Zero-Bias Anomaly in Disordered Wires, Phys. Rev. Lett. 87, 246801 (2001).

    Article  ADS  Google Scholar 

  92. J. Rollbühler and H. Grabert: Coulomb Blockade of Tunneling between Disordered Conductors, Phys. Rev. Lett. 87, 126804 (2001).

    Article  ADS  Google Scholar 

  93. B. Gao, A. Komnik, R. Egger, D. C. Glattli, and A. Bachtold: Evidence for Luttinger-Liquid Behavior in Crossed Metallic Single-Wall Nanotubes, Phys. Rev. Lett. 92, 216804 (2004).

    Article  ADS  Google Scholar 

  94. B. Reulet, A. Yu. Kasumov, M. Kociak, R. Deblock, I. I. Khodos, Yu. B. Gorbatov, V. T. Volkov, C. Journet, and H. Bouchiat: Acoustoelectric Effects in Carbon Nanotubes, Phys. Rev. Lett. 85, 2829 (2000).

    Article  ADS  Google Scholar 

  95. V. Sazonova, Y. Yaish, H. Ustünel, D. Roundy, T. A. Arias, and P. L. McEuen: A tunable carbon nanotube electromechanical oscillator, Nature 431, 284 (2004).

    Article  ADS  Google Scholar 

  96. K. Tsukagoshi, B. W. Alphenaar, and H. Ago: Coherent transport of electron spin in a ferromagnetically contacted carbon nanotube, Nature 401, 572 (1999).

    Article  ADS  Google Scholar 

  97. B. Zhao, I.Mönch, H. Vinzelberg, T. Mühl, and C. M. Schneider: Spin-coherent transport in ferromagnetically contacted carbon nanotubes, Appl. Phys. Lett. 80, 3144 (2002).

    Article  ADS  Google Scholar 

  98. K. Keren, R. S. Berman, E. Buchstab, U. Sivan, and E. Braun: DNA-Templated Carbon Nanotube Field-Effect Transistor, Science 302, 1380 (2003).

    Article  ADS  Google Scholar 

  99. J. A. Misewich, R. Martel, Ph. Avouris, J. C. Tsang, S. Heinze, and J. Tersoff: Electrically Induced Optical Emission from a Carbon Nanotube FET, Science 300, 783 (2003).

    Article  ADS  Google Scholar 

  100. S. Li, Z. Yu, S.-F. Yen, W. C. Tang, P. J. Burke: Carbon Nanotube Transistor Operation at 2.6 GHz, Nano Lett. 4, 753 (2004).

    Article  MATH  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Thune, E., Strunk, C. (2006). Quantum Transport in Carbon Nanotubes. In: Cuniberti, G., Richter, K., Fagas, G. (eds) Introducing Molecular Electronics. Lecture Notes in Physics, vol 680. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-31514-4_14

Download citation

Publish with us

Policies and ethics