Skip to main content

Tracking Stem Cells In Vivo

  • Conference paper
Stem Cells in Reproduction and in the Brain

Part of the book series: Ernst Schering Research Foundation Workshop ((SCHERING FOUND,volume 60))

Abstract

Stem cells have been targeted to many organ systems specifically to replace scarred organs and to rejuvenate diseased organs. Even though our understanding of the versatility of stem cells is slowly unraveling, tracking these cells as they enter the body has become a very important field of study. In this chapter, we review various modalities for imaging stem cells and assess the advantages and shortcomings of each technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arbab AS, Yocum GT, Kalish H et al. (2004)Efficient magnetic cell labeling with protamine sulfate complexed to ferumoxides for cellular MRI. Blood 104:1217–1223

    Article  PubMed  CAS  Google Scholar 

  • Barbash IM, Chouraqui P, Baron J et al. (2003) Systemic delivery of bone marrow-derived mesenchymal stem cells to the infarcted myocardium: feasibility, cell migration, and body distribution. Circulation 108:863–868

    Article  PubMed  Google Scholar 

  • Barbash IM, Leor J, Feinberg MS et al. (2004) Interventional magnetic resonance imaging for guiding gene and cell transfer in the heart. Heart 90:87–91

    Article  PubMed  CAS  Google Scholar 

  • Britten MB, Abolmaali ND, Assmus B et al. (2003) Infarct remodeling after intracoronary progenitor cell treatment in patients with acute myocardial infarction (TOPCARE-AMI): mechanistic insights from serial contrast-enhanced magnetic resonance imaging. Circulation 108:2212–2218

    Article  PubMed  CAS  Google Scholar 

  • Bulte JW, Douglas T, Witwer B et al. (2001) Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells. Nat Biotechnol 19:1141–1147

    Article  PubMed  CAS  Google Scholar 

  • Bulte JW, Kraitchman DL, Mackay AM, Pittenger MF(2004) Chondrogenic differentiation of mesenchymal stem cells is inhibited after magnetic labeling with ferumoxides. Blood 104:3410–3412; author reply 3412–3413

    Article  PubMed  CAS  Google Scholar 

  • Chance B (1998) Near-infrared images using continuous, phase-modulated, and pulsed light with quantitation of blood and blood oxygenation. Ann N Y Acad Sci 838:29–45

    Article  PubMed  CAS  Google Scholar 

  • Daldrup-Link HE, Rudelius M, Oostendorp RA et al. (2003) Targeting of hematopoietic progenitor cells with MR contrast agents. Radiology 228:760–767

    PubMed  Google Scholar 

  • Ding W, Bai J, Zhang J et al. (2004) In vivo tracking of implanted stem cells using radio-labeled transferrin scintigraphy. Nucl Med Biol 31:719–725

    Article  PubMed  CAS  Google Scholar 

  • Frangioni JV, Hajjar RJ (2004) In vivo tracking of stem cells for clinical trials in cardiovascular disease. Circulation 110:3378–3383

    Article  PubMed  Google Scholar 

  • Gimbel JR, Kanal E (2004) Can patients with implantable pacemakers safely undergo magnetic resonance imaging? J Am Coll Cardiol 43:1325–1327

    Article  PubMed  Google Scholar 

  • Hacein-Bey-Abina S, Von Kalle C, Schmidt M et al. (2003) LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 302:415–419

    Article  PubMed  CAS  Google Scholar 

  • Hill JM, Dick AJ, Raman VK et al. (2003) Serial cardiac magnetic resonance imaging of injected mesenchymal stem cells. Circulation 108:1009–1014

    Article  PubMed  Google Scholar 

  • Klibanov AL, Rasche PT, Hughes MS et al. (2004) Detection of individual microbubbles of ultrasound contrast agents: imaging of free-floating and targeted bubbles. Invest Radiol 39:187–195

    Article  PubMed  Google Scholar 

  • Kostura L, Kraitchman DL, Mackay AM, Pittenger MF, Bulte JW (2004) Feridex labeling of mesenchymal stem cells inhibits chondrogenesis but not adipogenesis or osteogenesis. NMR Biomed 17:513–517

    Article  PubMed  Google Scholar 

  • Kraitchman DL, Heldman AW, Atalar E et al. (2003) In vivo magnetic resonance imaging of mesenchymal stem cells in myocardial infarction. Circulation 107:2290–2293

    Article  PubMed  Google Scholar 

  • Lewin M, Carlesso N, Tung CH et al. (2000) Tat Peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat Biotechnol 18:410–414

    Article  PubMed  CAS  Google Scholar 

  • MacLaren DC, Toyokuni T, Cherry SR et al. (2000) PET imaging of transgene expression. Biol Psychiatry 48:337–348

    Article  PubMed  CAS  Google Scholar 

  • Martin ET, Coman JA, Shellock FG, Pulling CC, Fair R, Jenkins K (2004) magnetic resonance imaging and cardiac pacemaker safety at 1.5-Tesla. J Am Coll Cardiol 43:1315–1324

    Article  PubMed  Google Scholar 

  • Modo M, Cash D, Mellodew K et al. (2002) Tracking transplanted stem cell migration using bifunctional, contrast agent-enhanced, magnetic resonance imaging. Neuroimage 17:803–811

    Article  PubMed  Google Scholar 

  • Morawski AM, Lanza GA, Wickline SA (2005) Targeted contrast agents for magnetic resonance imaging and ultrasound. Curr Opin Biotechnol 16:89–92

    Article  PubMed  CAS  Google Scholar 

  • Orlic D, Kajstura J, Chimenti S et al. (2001) Bone marrow cells regenerate infarcted myocardium. Nature 410:701–705

    Article  PubMed  CAS  Google Scholar 

  • Perin EC, Dohmann HF, Borojevic R et al. (2003) Transendocardial, autologous bone marrow cell transplantation for severe, chronic ischemic heart failure. Circulation 107:2294–2302

    Article  PubMed  Google Scholar 

  • Roguin A, Donahue JK, Bomma CS, Bluemke DA, Halperin HR (2005) Cardiac magnetic resonance imaging in a patient with implantable cardioverter-defibrillator. Pacing Clin Electrophysiol 28:336–338

    Article  PubMed  CAS  Google Scholar 

  • Saito T, Kuang JQ, Lin CC, Chiu RC (2003) Transcoronary implantation of bone marrow stromal cells ameliorates cardiac function after myocardial infarction. J Thorac Cardiovasc Surg 126:114–123

    Article  PubMed  Google Scholar 

  • Simonova M, Shtanko O, Sergeyev N, Weissleder R, Bogdanov A Jr (2003) Engineering of technetium-99m-binding artificial receptors for imaging gene expression. J Gene Med 5:1056–1066

    Article  PubMed  CAS  Google Scholar 

  • Strauer BE, Brehm M, Zeus T et al. (2002) Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation 106:1913–1918

    Article  PubMed  Google Scholar 

  • Wickline SA, Lanza GM (2003) Nanotechnology for molecular imaging and targeted therapy. Circulation 107:1092–1095

    Article  PubMed  Google Scholar 

  • Wong MH, Saam JR, Stappenbeck TS, Rexer CH, Gordon JI (2000) Genetic mosaic analysis based on Cre recombinase and navigated laser capture microdissection. Proc Natl Acad Sci U S A 97:12601–12606

    Article  PubMed  CAS  Google Scholar 

  • Wu JC, Chen IY, Sundaresan G et al. (2003) Molecular imaging of cardiac cell transplantation in living animals using optical bioluminescence and positron emission tomography. Circulation 108:1302–1305

    Article  PubMed  Google Scholar 

  • Yoneyama R, Pomerantseva I, Kawase Y et al. (2004) Magnetic resonance imaging of ferumoxide labeled mesenchymal stem cells in myocardium injected by catheter-based technique via coronary vein. The Tony and Shelly Malkin Stem Cell Symposium November 8, 2004. Boston, MA, USA

    Google Scholar 

  • Zaheer A, Lenkinski RE, Mahmood A, Jones AG, Cantley LC, Frangioni JV (2001) In vivo near-infrared fluorescence imaging of osteoblastic activity. Nat Biotechnol 19:1148–1154

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yoneyama, R., Chemaly, E.R., Hajjar, R.J. (2006). Tracking Stem Cells In Vivo. In: Morser, J., Nishikawa, S.I., Schöler, H.R. (eds) Stem Cells in Reproduction and in the Brain. Ernst Schering Research Foundation Workshop, vol 60. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-31437-7_8

Download citation

Publish with us

Policies and ethics