Skip to main content

Paternal Dual Barrier by Ifg2-H19 and Dlk1-Gtl2 to Parthenogenesis in Mice

  • Conference paper
Stem Cells in Reproduction and in the Brain

Part of the book series: Ernst Schering Research Foundation Workshop ((SCHERING FOUND,volume 60))

Abstract

The functional difference between the maternal and paternal genome, which is characterized by epigenetic modifications during gametogenesis, that is genomic imprinting, prevents mammalian embryos from parthenogenesis. Genomic imprinting leads to nonequivalent expression of imprinted genes from the maternal and paternal alleles. However, our research showed that alteration of maternal imprinting by oocyte reconstruction using nongrowing oocytes together with deletion of the H19 gene, provides appropriate expression of maternally imprinted genes. Here we discuss that further alteration of paternally imprinted gene expressions at chromosomes 7 and 12 allows the ng/fg parthenogenetic embryos to develop to term, suggesting that the paternal contribution is obligatory for the descendant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ainscough J, Koide T, Tada M, Barton S, Surani M (1997) Imprinting of Igf2 and H19 from a 130 kb YAC transgene. Development 124:3621–3632

    PubMed  CAS  Google Scholar 

  • Bao S, Obata Y, Carroll J, Domeki I, Kono T (2000) Epigenetic modifications necessary for normal development are established during oocyte growth in mice. Biol Reprod 62:616–621

    Article  PubMed  CAS  Google Scholar 

  • Barton SC, Surani MA, Norris ML (1984) Role of paternal and maternal genomes in mouse development. Nature 311:374–376

    Article  PubMed  CAS  Google Scholar 

  • Brannan CI, Dees EC, Ingram R, Tilghman SM (1990) The product of the H19 gene may function as an RNA. Mol Cell Biol 10:28–36

    PubMed  CAS  Google Scholar 

  • Feil R, Charlton J, Bird AP, Walter J, Reik W (1994) Methylation analysis on individual chromosomes: improved protocol for bisulphite genomic sequencing. Nucleic Acids Res 22:695–696

    PubMed  CAS  Google Scholar 

  • Georgiades P, Watkins M, Burton GJ, Ferguson-Smith AC (2001) Roles for genomic imprinting and the zygotic genome in placental development. Proc Natl Acad Sci U S A 98:4522–4527

    Article  PubMed  CAS  Google Scholar 

  • Hagemann LJ, Peterson AJ, Weilert LL, Lee RS, Tervit HR (1998) In vitro and early in vivo development of sheep gynogenones and putative androgenones. Mol Reprod Dev 50:154–162

    Article  PubMed  CAS  Google Scholar 

  • Hao Y, Crenshaw T, Moulton T, Newcomb E, Tycko B (1993) Tumour-suppressor activity of H19 RNA. Nature 365:764–767

    Article  PubMed  CAS  Google Scholar 

  • Hark AT, Schoenherr CJ, Katz DJ, Ingram RS, Levorse JM, Tilghman SM (2000) CTCF mediates methylation-sensitive enhancer-blocking activity at the H19/Igf2 locus. Nature 405:486–489

    Article  PubMed  CAS  Google Scholar 

  • Hiura H, Obata Y, Komiyama J, Shirai M, Kono T (2006) Oocyte growth-dependent progression of maternal imprinting in mice. Genes Cells, in press

    Google Scholar 

  • Kobayashi S, Wagatsuma H, Ono R, Ichikawa H, Yamazaki M, Tashiro H, Aisaka K, Miyoshi N, Kohda T, Ogura A, Ohki M, Kaneko-Ishino T, Ishino F (2000) Mouse Peg9/Dlk1 and human PEG9/DLK1 are paternally expressed imprinted genes closely located to the maternally expressed imprinted genes: mouse Meg3/Gtl2 and human MEG3. Genes Cells 5:1029–1037

    Article  PubMed  CAS  Google Scholar 

  • Kono T, Obata Y, Yoshimzu T, Nakahara T, Carroll J (1996) Epigenetic modifications during oocyte growth correlates with extended parthenogenetic development in the mouse. Nature Genet 13:91–94

    Article  PubMed  CAS  Google Scholar 

  • Kono T, Sotomaru Y, Katsuzawa Y, Dandolo L (2002) Mouse parthenogenetic embryos with monoallelic H19 expression can develop to day 17.5 of gestation. Dev Biol 243:294–300

    Article  PubMed  CAS  Google Scholar 

  • Kono T, Obata Y, Wu Q, Niwa K, Ono Y, Yamamoto Y, Park E, Seo J, Ogawa H (2004) Birth of parthenogenetic mice that can develop to adulthood. Nature 428:860–864

    Article  PubMed  CAS  Google Scholar 

  • Kure-bayashi S, Miyake M, Okada K, Kato S (2000) Successful implantation of in vitro-matured, electro-activated oocytes in the pig. Theriogenology 53:1105–1119

    Article  PubMed  CAS  Google Scholar 

  • Leighton PA, Ingram RS, Eggenschwiler J, Efstratiadis A, Tilghman SM (1995) Disruption of imprinting caused by deletion of the H19 gene region in mice. Nature 375:34–39

    Article  PubMed  CAS  Google Scholar 

  • Li YM, Franklin G, Cui HM, Svensson K, He XB, Adam G, Ohlsson R, Pfeifer S (1998) The H19 transcript is associated with polysomes and may regulate IGF2 expression in trans. J Biol Chem 273:28247–28252

    Article  PubMed  CAS  Google Scholar 

  • Lucifero D, Mann M, Bartolomei M, Trasler J (2004) Gene-specific timing and epigenetic memory in oocyte imprinting. Hum Mol Genet 13:839–849

    Article  PubMed  CAS  Google Scholar 

  • Mann JR (2001) Imprinting in the germ line. Stem Cells 19:287–294

    Article  PubMed  CAS  Google Scholar 

  • McGrath J, Solter D (1984) Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell 37:179–183

    Article  PubMed  CAS  Google Scholar 

  • Moon YS, Smas CM, Lee K, Villena JA, Kim KH, Yun EJ, Sul HS (2002) Mice lacking paternally expressed Pref-1/Dlk1 display growth retardation and accelerated adiposity. Mol Cell Biol 15:5585–8892

    Article  Google Scholar 

  • Obata Y, Kono T (2002) Maternal primary imprinting is established at a specific time for each gene throughout oocyte growth. J Biol Chem 277:5285–5289

    Article  PubMed  CAS  Google Scholar 

  • Obata Y, Kaneko-Ishino T, Koide T, Takai Y, Ueda T, Domeki I, Shiroishi T, Ishino F, Kono T (1998) Disruption of primary imprinting during oocyte growth leads to the modified expression of imprinted genes during embryogenesis. Development 125:1553–1560

    PubMed  CAS  Google Scholar 

  • Ohlsson R, Hedborg F, Holmgren L, Walsh C, Ekstrom TJ (1994) Overlapping patterns of IGF2 and H19 expression during human development: biallelic IGF2 expression correlates with a lack of H19 expression. Development 120:361–368

    PubMed  CAS  Google Scholar 

  • Paulsen M, Takada S, Youngson NA, Benchaib M, Charlier C, Segers K, Georges M, Ferguson-Smith AC (2001) Comparative sequence analysis of the imprinted Dlk1-Gtl2 locus in three mammalian species reveals highly conserved genomic elements and refines comparison with the Igf2-H19 region. Genome Res 11:2085–2094

    Article  PubMed  CAS  Google Scholar 

  • Ripoche MA, Kress C, Poirier F, Dandolo L (1997) Deletion of the H19 transcription unit reveals the existence of a putative imprinting control element. Genes Dev 11:1596–1604

    PubMed  CAS  Google Scholar 

  • Sasaki H, Ferguson-Smith AC, Shum AS, Barton SC, Surani MA (1995) Temporal and spatial regulation of H19 imprinting in normal and uniparental mouse embryos. Development 121:4195–4202

    PubMed  CAS  Google Scholar 

  • Schmidt JV, Matteson PG, Jones BK, Guan XJ, Tilghman S (2000) The Dlk1 and Gtl2 genes are linked and reciprocally imprinted. Genes Dev 15:1997–2002

    Google Scholar 

  • Schuster-Gossler K, Simon-Chazottes D, Guenet JL, Zachgo J, Gossler A (1996) Gtl2lacZ, an insertional mutation on mouse chromosome 12 with parental origin-dependent phenotype. Mamm Genome 7:20–24

    Article  PubMed  CAS  Google Scholar 

  • Surani MAH, Barton SC (1983) Development of gynogenetic eggs in the mouse: Implications for parthenogenetic embryos. Science 222:1034–1036

    Article  PubMed  CAS  Google Scholar 

  • Surani MA, Kothary R, Allen ND, Singh PB, Fundele R, Ferguson-Smith AC, Barton SC (1990) Genome imprinting and development in the mouse. Dev Suppl:89–98

    Google Scholar 

  • Svensson K, Walsh C, Fundele R, Ohlsson R (1995) H19 is imprinted in the choroid plexus and leptomeninges of the mouse foetus. Mech Dev 51:31–37

    Article  PubMed  CAS  Google Scholar 

  • Takada S, Tevendale M, Baker J, Georgiades P, Campbell E, Freeman T, Johnson MH, Paulsen M, Ferguson-Smith AC (2000) Delta-like and gtl2 are reciprocally expressed, differentially methylated linked imprinted genes on mouse chromosome 12. Curr Biol 10:1135–1138

    Article  PubMed  CAS  Google Scholar 

  • Tada T, Obata Y, Tada M, Goto Y, Nakatsuji N, Tan S, Kono T, Takagi N (2000) Imprint switching for non-random X-chromosome inactivation during mouse oocyte growth. Development 127:3101–3105

    PubMed  CAS  Google Scholar 

  • Thorvaldsen JL, Duran KL, Bartolomei MS (1998) Deletion of the H19 differentially methylated domain results in loss of imprinted expression of H19 and Igf2. Genes Dev 12:3693–3702

    PubMed  CAS  Google Scholar 

  • Wu Q, Kumagai T, Kawahara M, Ogawa H, Hiura H, Obata Y, Takano R, Kono T (2006) Regulated expressions of two sets of paternally imprinted genes are necessary for mouse parthenogenetic development to term. Reproduction, in press

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kono, T., Kawahara, M., Wu, Q., Hiura, H., Obata, Y. (2006). Paternal Dual Barrier by Ifg2-H19 and Dlk1-Gtl2 to Parthenogenesis in Mice. In: Morser, J., Nishikawa, S.I., Schöler, H.R. (eds) Stem Cells in Reproduction and in the Brain. Ernst Schering Research Foundation Workshop, vol 60. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-31437-7_3

Download citation

Publish with us

Policies and ethics