Skip to main content

Derivation of Germ Cells from Embryonic Stem Cells

  • Conference paper
Stem Cells in Reproduction and in the Brain

Part of the book series: Ernst Schering Research Foundation Workshop ((SCHERING FOUND,volume 60))

Abstract

Embryonic stem cells (ESCs), derivatives of cells of early mammalian embryos, have proven to be one of the most powerful tools in developmental and stem cell biology. When injected into embryos, ESCs can contribute to tissues derived from all three germ layers and to the germline. Prior studies have successfully shown that ESCs can recapitulate features of embryonic development by spontaneously forming somatic lineages in culture. Amazingly, recently it has been shown that mouse ESCs can also give rise to primordial germ cells (PGCs) in culture that are capable of undergoing meiosis and forming both male and female gametes. While the full potential of these ES-derived germ cells and gametes remains to be demonstrated, these discoveries provide a new approach for studying reproductive biology and medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams IR, McLaren A (2002) Sexually dimorphic development of mouse primordial germ cells: switching from oogenesis to spermatogenesis. Development 129:1155–1164

    PubMed  CAS  Google Scholar 

  • Albrecht KH, Eicher EM (2001) Evidence that Sry is expressed in pre-Sertoli cells and Sertoli and granulosa cells have a common precursor. Dev Biol 240:92–107

    Article  PubMed  CAS  Google Scholar 

  • Anderson R, Copeland TK, Scholer H, Heasman J, Wylie C (2000) The onset of germ cell migration in the mouse embryo. Mech Dev 91:61–68

    Article  PubMed  CAS  Google Scholar 

  • Beddington RS, Robertson EJ (1989) An assessment of the developmental potential of embryonic stem cells in the midgestation mouse embryo. Development 105:733–737

    PubMed  CAS  Google Scholar 

  • Burdon T, Chambers I, Stracey C, Niwa H, Smith A (1999) Signaling mechanisms regulating self-renewal and differentiation of pluripotential embryonic stem cells. Cells Tissues Organs 165:131–134

    Article  PubMed  CAS  Google Scholar 

  • Chambers I, Colby D, Robertson M et al. (2003) Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 113:643–655

    Article  PubMed  CAS  Google Scholar 

  • Chang H, Matzuk MM (2001) Smad5 is required for mouse primordial germ cell development. Mech Dev 104:61–67

    Article  PubMed  CAS  Google Scholar 

  • De Miguel MP, Cheng L, Holland EC, Federspiel MJ, Donovan PJ (2002) Dissection of the c-kit signaling pathway in mouse primordial germ cells by retroviral-mediated gene transfer. Proc Natl Acad Sci U S A 99:10458–10463

    Article  PubMed  CAS  Google Scholar 

  • Dobson MJ, Pearlman RE, Karaiskakis A, Spyropoulos B, Moens PB (1994) Synaptonemal complex proteins: occurrence, epitope mapping and chromosome disjunction. J Cell Sci 107:2749–2760

    PubMed  CAS  Google Scholar 

  • Dolci S, Williams DE, Ernst MK et al. (1991) Requirement for mast cell growth factor for primordial germ cell survival in culture. Nature 352:809–811

    Article  PubMed  CAS  Google Scholar 

  • Donovan PJ, Stott D, Cairns LA, Heasman J, Wylie CC (1986) Migratory and postmigratory mouse primordial germ cells behave differently in culture. Cell 44:831–838

    Article  PubMed  CAS  Google Scholar 

  • Ehmcke J, Hübner K, Schöler HR, Schlatt S (2006) Spermatogonia: origin, physiology and prospects for conservation and manipulation of the male germline. Fertil Reprod Develop 18:7–12

    Google Scholar 

  • Eppig J, Viveiros M, Bivens C, De La Fuente R (2003) Regulation of Mammalian oocyte maturation. In: Long P, Adashi E (eds) The ovary. Elsevier, San Diego, pp 113–129

    Google Scholar 

  • Fan H, Sun Q (2004) Involvement of mitogen-activated protein kinase cascade during oocytematuration and fertilization inmammals. BiolReprod 70:535–547

    Article  CAS  Google Scholar 

  • Findlay JK, Drummond AE, Dyson ML et al. (2002) Recruitment and development of the follicle: the roles of the transforming growth factor-beta superfamily. Mol Cell Endocrinol 191:35–43

    Article  PubMed  CAS  Google Scholar 

  • Fuhrmann G, Chung AC, Jackson KJ et al. (2001) Mouse germline restriction of Oct4 expression by germ cell nuclear factor. Dev Cell 1:377–387

    Article  PubMed  CAS  Google Scholar 

  • Fujiwara T, Dunn NR, Hogan BL (2001) Bone morphogenetic protein 4 in the extraembryonic mesoderm is required for allantois development and the localization and survival of primordial germ cells in the mouse. Proc Natl Acad Sci U S A 98:13739–13744

    Article  PubMed  CAS  Google Scholar 

  • Gardner RL, Rossant J (1979) Investigation of the fate of 4-5 day post-coitum mouse inner cell mass cells by blastocyst injection. J Embryol Exp Morphol 52:141–145

    PubMed  CAS  Google Scholar 

  • Geijsen N, Horoschak M, Kim K et al. (2004) Derivation of embryonic germ cells and male gametes from embryonic stem cells. Nature 427:148–154

    Article  PubMed  CAS  Google Scholar 

  • Ginsburg M, Snow MH, McLaren A (1990) Primordial germ cells in the mouse embryo during gastrulation. Development 110:521–528

    PubMed  CAS  Google Scholar 

  • Gosden RG (2002) Oogenesis as a foundation for embryogenesis. Mol Cell Endocrinol 186:149–153

    Article  PubMed  CAS  Google Scholar 

  • Hahnel AC, Rappolee DA, Millan JL et al. (1990) Two alkaline phosphatase genes are expressed during early development in the mouse embryo. Development 110:555–564

    PubMed  CAS  Google Scholar 

  • Hayashi K, Kobayashi T, Umino T et al. (2002) SMAD1 signaling is critical for initial commitment of germ cell lineage from mouse epiblast. Mech Dev 118:99–109

    Article  PubMed  CAS  Google Scholar 

  • Hübner K, Fuhrmann G, Christenson LK et al. (2003) Derivation of oocytes from mouse embryonic stem cells. Science 300:1251–1256

    Article  PubMed  CAS  Google Scholar 

  • Johnson J, Bagley J, Skaznik-Wikiel M, Lee HJ, Adams GB, Niikura Y, Tschudy KS, Tilly JC, Cortes ML, Forkert R, Spitzer T, Iacomini J, Scadden DT, Tilly JL (2005) Oocyte generation in adult mammalian ovaries by putative germ cells in bone marrow and peripheral blood. Cell 122:303–315

    Article  PubMed  CAS  Google Scholar 

  • Kehler J, Tolkunova E, Koschorz B et al. (2004) Oct4 is required for primordial germ cell survival. EMBO Rep 5:1078–1083

    Article  PubMed  CAS  Google Scholar 

  • Koshimizu U, Taga T, Watanabe M et al. (1996) Functional requirement of gp130-mediated signaling for growth and survival ofmouse primordial germ cells in vitro and derivation of embryonic germ (EG) cells. Development 122:1235–12342

    PubMed  CAS  Google Scholar 

  • Lawson KA, Hage WJ (1994) Clonal analysis of the origin of primordial germ cells in the mouse. Ciba Found Symp 182:68–84; discussion 84–91

    PubMed  CAS  Google Scholar 

  • Lawson KA, Dunn NR, Roelen BA et al. (1999) Bmp4 is required for the generation of primordial germ cells in the mouse embryo. Genes Dev 13:424–436

    PubMed  CAS  Google Scholar 

  • Matsuda T, Nakamura T, Nakao K et al. (1999) STAT3 activation is sufficient to maintain an undifferentiated state of mouse embryonic stem cells. EMBO J 18:4261–4269

    Article  PubMed  CAS  Google Scholar 

  • Matsui Y, Toksoz D, Nishikawa S, Williams D, Zsebo K, Hogan BL (1991) Effect of steel factor and leukaemia inhibitory factor on murine primordial germ cells in culture. Nature 353:750–752

    Article  PubMed  CAS  Google Scholar 

  • McLaren A (2003) Primordial germ cells in the mouse. Dev Biol 262:1–15

    Article  PubMed  CAS  Google Scholar 

  • Menke DB, Koubova J, Page DC (2003) Sexual differentiation of germ cells in XX mouse gonads occurs in an anterior-to-posterior wave. Dev Biol 262:303–312

    Article  PubMed  CAS  Google Scholar 

  • Mitsui K, Tokuzawa Y, Itoh H et al. (2003) The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 113:631–642

    Article  PubMed  CAS  Google Scholar 

  • Nagy A, Gocza E, Diaz EM et al. (1990) Embryonic stem cells alone are able to support fetal development in the mouse. Development 110:815–821

    PubMed  CAS  Google Scholar 

  • Nagy A, Rossant J, Nagy R, Abramow-Newerly W, Roder JC (1993) Derivation of completely cell culture-derived mice from early-passage embryonic stem cells. Proc Natl Acad Sci U S A 90:8424–8428

    Article  PubMed  CAS  Google Scholar 

  • Nakamura T, Arai T, Takagi M et al. (1998) A selective switch-on system for self-renewal of embryonic stem cells using chimeric cytokine receptors. Biochem Biophys Res Commun 248:22–27

    Article  PubMed  CAS  Google Scholar 

  • Nichols J, Zevnik B, Anastassiadis K et al. (1998) Formation of pluripotential stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 95:379–391

    Article  PubMed  CAS  Google Scholar 

  • Niwa H, Burdon T, Chambers I, Smith A (1998) Self-renewal of pluripotential embryonic stem cells is mediated via activation of STAT3. Genes Dev 12:2048–2060

    PubMed  CAS  Google Scholar 

  • Niwa H, Miyazaki J, Smith AG (2000) Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat Genet 24:372–376

    Article  PubMed  CAS  Google Scholar 

  • Noce T, Okamoto-Ito S, Tsunekawa N (2001) Vasa homolog genes in mammalian germ cell development. Cell Struct Funct 26:131–136

    Article  PubMed  CAS  Google Scholar 

  • Nordhoff V, Hübner K, Bauer A et al. (2001) Comparative analysis of human, bovine, and murine Oct-4 upstream promoter sequences. Mamm Genome 12:309–317

    Article  PubMed  CAS  Google Scholar 

  • O’Brien MJ, Pendola JK, Eppig JJ (2003) A revised protocol for in vitro development of mouse oocytes from primordial follicles dramatically improves their developmental competence. Biol Reprod 68:1682–1686

    Article  PubMed  CAS  Google Scholar 

  • Ohinata Y, Payer B, O’Carrol D et al. (2005) Blimp1 is a critical determinant of the germ cell lineage in mice. Nature 436:207–213

    Article  PubMed  CAS  Google Scholar 

  • Ohta H, Wakayama T, Nishimune Y (2004) Commitment of fetal male germ cells to spermatogonial stem cells during mouse embryonic development. Biol Reprod 70:1286–1291

    Article  PubMed  CAS  Google Scholar 

  • Palmieri SL, Peter W, Hess H, Schöler HR (1994) Oct-4 transcription factor is differentially expressed in the mouse embryo during establishment of the first two extraembryonic cell lineages involved in implantation. Dev Biol 166:259–267

    Article  PubMed  CAS  Google Scholar 

  • Pesce M, Gross MK, Schöler HR (1998a) In line with our ancestors: Oct-4 and the mammalian germ. Bioessays 20:722–732

    Article  PubMed  CAS  Google Scholar 

  • Pesce M, Wang X, Wolgemuth DJ, Schöler H (1998b) Differential expression of the Oct-4 transcription factor during mouse germ cell differentiation. Mech Dev 71:89–98

    Article  PubMed  CAS  Google Scholar 

  • Raz E (2000) The function and regulation of vasa-like genes in germ-cell development. Genome Biol 1:Rev. 1017

    Article  Google Scholar 

  • Robertson EJ (1986) Pluripotential stem cell lines as a route into the mouse germline. Trends Genet 2:9–13

    Article  Google Scholar 

  • Rosner MH, Vigano MA, Ozato K et al. (1990) A POU-domain transcription factor in early stem cells and germ cells of the mammalian embryo. Nature 345:686–692

    Article  PubMed  CAS  Google Scholar 

  • Rossant J, Gardner RL, Alexandre HL (1978) Investigation of the potency of cells from the postimplantation mouse embryo by blastocyst injection: a preliminary report. J Embryol Exp Morphol 48:239–247

    PubMed  CAS  Google Scholar 

  • Saitou M, Barton SC, Surani MA (2002) A molecular programme for the specification of germ cell fate in mice. Nature 418:293–300

    Article  PubMed  CAS  Google Scholar 

  • Schöler HR, Hatzopoulos AK, Balling R, Suzuki N, Gruss P (1989) A family of octamer-specific proteins present during mouse embryogenesis: evidence for germline-specific expression of an Oct factor. EMBO J 8:2543–2550

    PubMed  Google Scholar 

  • Schöler HR, Ruppert S, Suzuki N, Chowdhury K, Gruss P (1990) New type of POU domain in germline-specific protein Oct-4. Nature 344:435–439

    Article  PubMed  Google Scholar 

  • Smith AG, Heath JK, Donaldson DD et al. (1988) Inhibition of pluripotential embryonic stem cell differentiation by purified polypeptides. Nature 336:688–690

    Article  PubMed  CAS  Google Scholar 

  • Stahl N, Boulton TG, Farruggella T et al. (1994) Association and activation of Jak-Tyk kinases by CNTF-LIF-OSM-IL-6 beta receptor components. Science 263:92–95

    Article  PubMed  CAS  Google Scholar 

  • Tam PL, Rossant J (2003) Mouse embryonic chimeras: tools for studying mammalian development. Development 130:6155–6163

    Article  PubMed  CAS  Google Scholar 

  • Tam PP, Zhou SX (1996) The allocation of epiblast cells to ectodermal and germline lineages is influenced by the position of the cells in the gastrulating mouse embryo. Dev Biol 178:124–132

    Article  PubMed  CAS  Google Scholar 

  • Tanaka SS, Toyooka Y, Akasu R et al. (2000) Themouse homolog of Drosophila Vasa is required for the development of male germ cells. Genes Dev 14:841–853

    PubMed  CAS  Google Scholar 

  • Tilmann C, Capel B (2002) Cellular and molecular pathways regulating mammalian sex determination. Recent Prog Horm Res 57:1–18

    Article  PubMed  CAS  Google Scholar 

  • Toyooka Y, Tsunekawa N, Takahashi Y et al. (2000) Expression and intracellular localization of mouse Vasa-homologue protein during germ cell development. Mech Dev 93:139–149

    Article  PubMed  CAS  Google Scholar 

  • Toyooka Y, Tsunekawa N, Akasu R, Noce T (2003) Embryonic stem cells can form germ cells in vitro. Proc Natl Acad Sci U S A 100:11457–11462

    Article  PubMed  CAS  Google Scholar 

  • Tremblay KD, Dunn NR, Robertson EJ (2001) Mouse embryos lacking Smad1 signals display defects in extra-embryonic tissues and germ cell formation. Development 128:3609–3621

    PubMed  CAS  Google Scholar 

  • Upadhyay S, Zamboni L (1982) Ectopic germ cells: natural model for the study of germ cell sexual differentiation. Proc Natl Acad Sci U S A 79:6584–6588

    Article  PubMed  CAS  Google Scholar 

  • Yeom YI, Ha HS, Balling R, Schöler HR, Artzt K (1991) Structure, expression and chromosomal location of the Oct-4 gene. Mech Dev 35:171–179

    Article  PubMed  CAS  Google Scholar 

  • Yeom YI, Fuhrmann G, Ovitt CE et al. (1996) Germline regulatory element of Oct-4 specific for the totipotential cycle of embryonal cells. Development 122:881–894

    PubMed  CAS  Google Scholar 

  • Ying Y, Liu XM, Marble A, Lawson KA, Zhao GQ (2000) Requirement of Bmp8b for the generation of primordial germ cells in the mouse. Mol Endocrinol 14:1053–1063

    Article  PubMed  CAS  Google Scholar 

  • Ying Y, Qi X, Zhao GQ (2001) Induction of primordial germ cells from murine epiblasts by synergistic action of BMP4 and BMP8B signaling pathways. Proc Natl Acad Sci U S A 98:7858–7862

    Article  PubMed  CAS  Google Scholar 

  • Yoshida K, Kondoh G, Matsuda Y et al. (1998) The mouse RecA-like gene Dmc1 is required for homologous chromosome synapsis during meiosis. Mol Cell 1:707–718

    Article  PubMed  CAS  Google Scholar 

  • Yoshimizu T, Sugiyama N, De Felice M et al. (1999) Germline-specific expression of the Oct-4/green fluorescent protein (GFP) transgene in mice. Dev Growth Differ 41:675–684

    Article  PubMed  CAS  Google Scholar 

  • Yoshimizu T, Obinata M, Matsui Y (2001) Stage-specific tissue and cell interactions play key roles in mouse germ cell specification. Development 128:481–490

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kehler, J., Hübner, K., Schöler, H.R. (2006). Derivation of Germ Cells from Embryonic Stem Cells. In: Morser, J., Nishikawa, S.I., Schöler, H.R. (eds) Stem Cells in Reproduction and in the Brain. Ernst Schering Research Foundation Workshop, vol 60. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-31437-7_10

Download citation

Publish with us

Policies and ethics