Skip to main content

The Stem Cell Continuum: A New Model of Stem Cell Regulation

  • Chapter
Stem Cells

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 174))

Abstract

Most models of hematopoiesis have been hierarchical in nature. This is based on a large volume of correlative data. Recent work has indicated that, at least at the stem/progenitor level, hematopoiesis may, in fact, be a continuum of transcriptional opportunity. The most primitive hematopoietic stem cells are either continually cycling at a slow rate or entering and exiting cell cycle. Associated with this cycle passage are changes in functional phenotype including reversible alterations in engraftment, adhesion protein expression, cytokine receptor expression, homing to marrow, and progenitor cell numbers. Global gene expression, as measured in one point in cycle, is also markedly altered. The differentiation potential of the marrow as it transits cell cycle in response to a set differentiation stimulus also shows marked variations. This cycle-related plasticity has been clearly established for hematopoiesis. It also holds for the ability of murine marrow stem cells to home to lung and to convert to pulmonary cells. These data indicate that bone marrow stem cells can probably not be defined as discrete entities but must rather be studied on a population basis. They also indicate that mathematical modeling will become progressively more important in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abedi M, Greer D, Colvin G, Demers D, Dooner M, Harpel J, Heinz-Ulrich W, Lambert JF, Quesenberry PJ (2004) Robust conversion of marrow cells to skeletal muscle with formation of marrow-derived muscle cell colonies: a multifactorial process. Exp Hematol 32:426–434

    Article  CAS  PubMed  Google Scholar 

  • Becker PS, Nilsson SK, Li Z, Berrios VM, Dooner MS, Cooper CJ, Hsieh CC, Quesenberry PJ (1999) Adhesion receptor expression by hematopoietic cell lines and murine progenitors: modulation by cytokines and cell cycle status. Exp Hematol 27:533–541

    Article  CAS  PubMed  Google Scholar 

  • Berrios VM, Dooner GJ, Nowakowski G, Frimberger A, Valinski H, Quesenberry PJ, Becker PS (2001) Themolecular basis for the cytokine-induced defect in homing and engraftment of hematopoietic stem cells. Exp Hematol 29:1326–1335

    Article  CAS  PubMed  Google Scholar 

  • Bertoncello I, Bradley TR, Dunlop JM, Hodgson GS (1989) The concentration and resolution of primitive hemopoietic cells from normal mouse bone marrow by negative selection using monoclonal antibodies and Dynabead monodisperse magnetic microspheres. Exp Hematol 17:484a

    Google Scholar 

  • Bradley TR, Metcalf D (1966) The growth of mouse bone marrow cells in vitro. Aust J Exp Biol Med Sci 44:287–299

    CAS  PubMed  Google Scholar 

  • Bradford GB, Williams B, Rossi R, Bertoncello I (1997) Quiescence, cycling, and turnover in the primitive hematopoietic stem cell compartment. Exp Hematol 25:445–453

    CAS  PubMed  Google Scholar 

  • Briddell RA, Brandt JE, Straneva JE, Srour EF, Hoffman R (1989) Characterization of the human burst-forming unit-megakaryocyte. Blood 74:145–151

    CAS  PubMed  Google Scholar 

  • Cerny J, Quesenberry PJ (2004) Chromatin remodeling and stem cell theory of relativity. J Cell Physiol 201:1–16

    Article  CAS  PubMed  Google Scholar 

  • Cerny J, Dooner MS, McAuliffe CI, Habibian H, Stencil K, Berrios V, Reilly J, Carlson JE, Cerny AM, D’Hondt L, Benoit B, Lambert JF, Colvin GA, Nilsson S, Becker P, Quesenberry P (2002) Homing of purified murine lymphohematopoietic stem cells: a cytokine-induced defect. J Hematother Stem Cell Res 11:913–922

    Article  CAS  PubMed  Google Scholar 

  • Cheshier SH, Morrison SJ, Liao X, Weissman IL (1999) In vivo proliferation and cell cycle kinetics of long-term self-renewing hematopoietic stem cells. Proc Natl Acad Sci U S A, 96:3120–3125

    Article  CAS  PubMed  Google Scholar 

  • Colvin GA, Lambert JF, Moore BE, Carlson JE, Dooner MS, Abedi M, Cerny J, Quesenberry PJ (2004) Intrinsic hematopoietic stem cell/progenitor plasticity: inversions. J Cell Physiol 199:20–31

    Article  CAS  PubMed  Google Scholar 

  • Colvin GA, Dooner MS, Abedi M, Demers D, Lambert JF, Ramanathan M, Bitar I, Huerta F, Aliotta J, Quesenberry PJ (2004) Hotspots of differentiation found in clonally derived purified murine marrow stem cells (abstract). Exp Hematol 32:48

    Google Scholar 

  • Cronkite EP (1975) Hemopoietic stem cells. An analytic review of hemopoiesis. Pathobiol Annu 5:35–69

    CAS  PubMed  Google Scholar 

  • D’Hondt L, McAuliffe C, Damon J, Reilly J, Carlson J, Dooner M, Colvin G, Lambert JF, Habibian H, Hsieh C, Stencel K, Quesenberry PJ (2004) Circadian variations of bone marrow engraftability. J Cell Physiol 200:63–70

    CAS  PubMed  Google Scholar 

  • Dooner MS, Pimentel J, Colvin GA, Abedi M, Aliotta J, Demers D, Greer D, Cerny J, Dooner G, Quesenberry PJ (2004) Engraftment and homing of whole bone marrow and stem cells to lung (abstract). Exp Hematol 32:91

    Google Scholar 

  • Frimberger AE, Stering AI, Quesenberry PJ (2001) An in vitro model of hematopoietic stem cell homing and maintenance of engraftable stem cells. Blood 98:1012–1018

    Article  CAS  PubMed  Google Scholar 

  • Gregory CJ (1976) Erythropoietin sensitivity as a differentiation marker in the hemopoietic system: studies of three erythropoietic colony responses in culture. J Cell Physiol 89:289–301

    Article  CAS  PubMed  Google Scholar 

  • Habibian HK, Peters SO, Hsieh CC, Wuu J, Vergilis K, Grimaldi CI, Reilly J, Carlson JE, Frimberger AE, Stewart FM, Quesenberry PJ (1998) The fluctuating phenotype of the lymphohematopoietic stem cell with cell cycle transit. J Exp Med 188:393–398

    Article  CAS  PubMed  Google Scholar 

  • Heath DS, Axelrad AA, McLeod DL, Shreeve MM (1976) Separation of the erythropoietin-responsive progenitors BFU-E and CFU-E in mouse bone marrow by unit gravity sedimentation. Blood 47:777–792

    CAS  PubMed  Google Scholar 

  • Iscove NN, Sieber F (1975) Erythroid progenitors in mouse bone marrow detected my macroscopic colony formation in culture. Exp Hematol 3:32–43

    CAS  PubMed  Google Scholar 

  • Kittler EL, Peters SO, Crittenden RB, Debatis ME, Ramshaw HS, Stewart FM, Quesenberry PJ (1997) Cytokine-facilitated transduction leads to low-level engraftment in nonablated hosts. Blood 90:865–872

    CAS  PubMed  Google Scholar 

  • Krause DS, Theise ND, Collector MI, Henegariu O, Hwang S, Gardner R, Neutzel S, Sharkis SJ (2001) Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell 105:369–377

    Article  CAS  PubMed  Google Scholar 

  • Lagassee E, Connors H, Al-Dhalimy M, Reitsma M, Dohse M, Osborne L, Wang X, Finegold M, Weissman IL, Grompe M (2000) Purified hematopoietic stem cells can differentiate into hepatocytes in vivo. Nat Med 6:1229–1234

    Google Scholar 

  • Lambert JF, Liu M, Colvin GA, Dooner M, McAuliffe CI, Becker PS, Forget BG, Weissman SM, Quesenberry PJ (2003) Marrow stem cells shift gene expression and engraftment phenotype with cell cycle transit. J Exp Med 197:1563–1572

    Article  CAS  PubMed  Google Scholar 

  • Long MW, Gragowski LL, Heffner CH, Boxer LA (1985) Phorbol diesters stimulate the development of an early murine progenitor cell. The burst-forming unit-megakaryocyte. J Clin Invest 76:431–438

    CAS  PubMed  Google Scholar 

  • McLeod DL, Shreeve MM, Axelrad AA (1974) Improved plasma culture system for production of erythrocytic colonies in vitro: quantitative assay method for CFU-E. Blood 44:517–534

    CAS  PubMed  Google Scholar 

  • McLeod DL, Shreve MM, Axelrad AA (1976) Induction of megakaryocytes colonies with platelet formation in vitro. Nature 261:492–494

    Article  CAS  PubMed  Google Scholar 

  • McNiece IK, Stewart FM, Deacon DM, Quesenberry PJ (1988a) Synergistic interactions between hematopoietic growth factors as detected by in vitro mouse bone marrow colony formation. Exp Hematol 16:383–388

    CAS  PubMed  Google Scholar 

  • McNiece IK, Robinson BE, Quesenberry PJ (1988b) Stimulation of murine colony-forming cells with high proliferative potential by the combination of GM-CSF and CSF-1. Blood 72:191–195

    CAS  PubMed  Google Scholar 

  • McNiece IK, Kriegler AB, Quesenberry PJ (1989a) Studies on the myeloid synergistic factor from 5637: comparison with interleukin-1 alpha. Blood 73:919–923

    CAS  PubMed  Google Scholar 

  • McNiece IK, Stewart FM, Deacon DM, Temeles DS, Zsebo KM, Clark SC, Quesenberry PJ (1989b) Detection of a human CSF with a high proliferative potential. Blood 74:609–612

    CAS  PubMed  Google Scholar 

  • McNiece IK, Andrews R, Stewart FM, Clark S, Boone T, Quesenberry PJ (1989c) Action of IL-3, G-CSF, and GM-CSF on highly enriched human hematopoietic progenitor cells: Synergistic interaction of GM-CSF plus G-CSF. Blood 74:110–114

    CAS  PubMed  Google Scholar 

  • Metcalf D, MacDonald HR, Odartchenko N, Sordat B (1975) Growth of mouse megakaryocyte colonies in vitro. Proc Natl Acad Sci U S A 72:1744–1748

    CAS  PubMed  Google Scholar 

  • Nakahata T, Ogawa M (1982) Hemopoietic colony-forming cells in umbilical cord blood with extensive capability to generate mono-and multipotential hemopoietic progenitors. J Clin Invest 70:1324–1328

    CAS  PubMed  Google Scholar 

  • Nakeff A, Dicke KA, Noord van MJ (1975) Megakarocytes in agar cultures of mouse bone marrow. Ser Haematol 8:4–21

    CAS  PubMed  Google Scholar 

  • Nilsson SK, Dooner MS, Quesenberry PJ (1997) Synchronized cell-cycle induction of engrafting long-term repopulating stem cells. Blood 90:4646–4650

    CAS  PubMed  Google Scholar 

  • Nowakowski GS, Dooner MS, Valinski HM, Mihaliak AM, Quesenberry PJ, Becker PS (2004) A specific heptapeptide from phage display peptide library homes to bone marrow and binds to primitive hematopoietic stem cells. Stem Cells 22:1030–1038

    Article  CAS  PubMed  Google Scholar 

  • Ogawa M, Pharr PN, Suda T (1985) Stochastic nature of stem cell functions in culture. Alan R. Liss, New York, pp 11–19

    Google Scholar 

  • Pang L, Reddy PV, McAuliffe CI, Colvin GA, Quesenberry PJ (2003) Studies on BrdU labeling of hematopoietic cells: stem cells and cell lines. J Cell Physiol 197:251–260

    Article  CAS  PubMed  Google Scholar 

  • Peters SO, Kittler EL, Ramshaw HS, Quesenberry PJ (1995) Murine marrow cells expanded in culture with IL-3, IL-6, IL-11, and SCF acquire an engraftment defect in normal hosts. Exp Hematol 23:461–469

    CAS  PubMed  Google Scholar 

  • Peters SO, Kittler EL, Ramshaw HS, Quesenberry PJ (1996) Ex vivo expansion of murine marrow cells with interleukin-3 (IL-3), IL-6, IL-11, and stem cell factor leads to impaired engraftment in irradiated hosts. Blood 87:30–37

    CAS  PubMed  Google Scholar 

  • Peters SO, Habibian HK, Vergilis K, Quesenberry PJ (1999) Effects on cytokines on stem cell engraftment depends on time of evaluation post-marrow infusion. Int J Hematol 70:112–118

    CAS  PubMed  Google Scholar 

  • Peters SO, Habibian H, Quesenberry PJ (2002) Cytokine modulation of murine stem cell engraftment: the role of adherence of plastic surfaces. Intl J Hematol 76:84–90

    CAS  Google Scholar 

  • Pluznik DH, Sachs L (1965) The cloning of normal “mast” cells in tissue culture. J Cell Physol 66:319–324

    CAS  Google Scholar 

  • Quesenberry PJ (1991) The blueness of stem cells. Exp Hematol 19:725–728

    CAS  PubMed  Google Scholar 

  • Reddy GP, Tiarks CY, Pang L, Wuu J, Hsieh CC, Quesenberry PJ (1997) Cell cycle analysis and synchronization of pluripotent hematopoietic progenitor stem cells. Blood 90:2293–2299

    CAS  PubMed  Google Scholar 

  • Suda T, Suda J, Ogawa M (1983) Single-cell origin of mouse hemopoietic colonies expressing multiple lineages in variable combinations. Proc Natl Acad Sci U S A 80:6689–6693

    CAS  PubMed  Google Scholar 

  • Suda T, Suda J, Ogawa M (1984) Disparate differentiation in mouse hemopoietic colonies derived from paired progenitors. Proc Natl Acad Sci U S A 81:2520–2524

    CAS  PubMed  Google Scholar 

  • Till JE, McCulloch EA (1961) A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat Res 14:213–222

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Quesenberry, P., Colvin, G., Dooner, M. (2006). The Stem Cell Continuum: A New Model of Stem Cell Regulation. In: Wobus, A.M., Boheler, K.R. (eds) Stem Cells. Handbook of Experimental Pharmacology, vol 174. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-31265-X_8

Download citation

Publish with us

Policies and ethics