Skip to main content

Weak Approximation of Stopped Dffusions

  • Conference paper
Monte Carlo and Quasi-Monte Carlo Methods 2004

Summary

In this work we study standard Euler updates for simulating stopped diffusions. We make extensive use of the fact that in many applications approximations have to be good only in the weak sense. This means that for good convergence properties only an accurate approximation of the distribution is essential whereas path wise convergence is not needed. Consequently, we sample needed random variables from their analytical distributions (or suitable approximations). As an immediate application we discuss the computation of first exit times of diffusions from a domain. We focus on one dimensional situations but illustrate extensions and applications in higher dimensional settings.

We include a series of numerical experiments confirming the conjectured accuracy of our methods (they are of weak order one).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Paolo Baldi. Exact asymptotics for the probability of exit from a domain and applications to simulation. Ann. Probab., 23(4):1644–1670, 1995.

    MATH  MathSciNet  Google Scholar 

  2. F.M. Buchmann and W.P. Petersen. Solving Dirichlet problems numerically using the Feynman-Kac representation. BIT, 43(3):519–540, 2003.

    Article  MathSciNet  Google Scholar 

  3. Andrei N. Borodin and Paavo Salminen. Handbook of Brownian motion—facts and formulae. Probability and its Applications. Birkhäuser Verlag, Basel, second edition, 2002.

    Google Scholar 

  4. F.M. Buchmann. Solving high dimensional Dirichlet problems numerically using the Feynman-Kac representation. PhD thesis, Swiss Federal Institute of Technology Zurich, 2004.

    Google Scholar 

  5. F. M. Buchmann. Simulation of stopped diffusions. J. Comp. Phys., 202(2):446–462, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  6. J. L. Folks and R. S. Chhikara. The inverse Gaussian distribution and its statistical application—a review. J. Roy. Statist. Soc. Ser. B, 40(3):263–289, 1978. With discussion.

    MathSciNet  Google Scholar 

  7. Mark Freidlin. Functional integration and partial differential equations, volume 109 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 1985.

    Google Scholar 

  8. Emmanuel Gobet. Weak approximation of killed diffusion using Euler schemes. Stochastic Process. Appl., 87(2):167–197, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  9. Kalvis M. Jansons and G. D. Lythe. Efficient numerical solution of stochastic differential equations using exponential timestepping. J. Statist. Phys., 100(5–6):1097–1109, 2000.

    Article  MathSciNet  Google Scholar 

  10. Kalvis M. Jansons and G. D. Lythe. Exponential timestepping with boundary test for stochastic differential equations. SIAM J. Sci. Comput., 24(5):1809–1822 (electronic), 2003.

    Article  MathSciNet  Google Scholar 

  11. Peter E. Kloeden and Eckhard Platen. Numerical solution of stochastic differential equations, volume 23 of Applications of Mathematics (New York). Springer-Verlag, Berlin, 1992.

    Google Scholar 

  12. Maurice G. Kendall and Alan Stuart. The advanced theory of statistics. Vol. 2. Hafner Publishing Co., New York, third edition, 1973. Inference and relationship.

    Google Scholar 

  13. H. R. Lerche and D. Siegmund. Approximate exit probabilities for a Brownian bridge on a short time interval, and applications. Adv. in Appl. Probab., 21(1):1–19, 1989.

    Article  MathSciNet  Google Scholar 

  14. G. N. Milstein. Numerical integration of stochastic differential equations, volume 313 of Mathematics and its Applications. Kluwer Academic Publishers Group, Dordrecht, 1995. Translated and revised from the 1988 Russian original.

    Google Scholar 

  15. G. N. Milstein. Weak approximation of a diffusion process in a bounded domain. Stochastics Stochastics Rep., 62(1–2):147–200, 1997.

    MATH  MathSciNet  Google Scholar 

  16. John R. Michael, William R. Schucany, and Roy W. Haas. Generating random variates using transformations with multiple roots. Am. Stat., 30:88–90, 1976.

    Article  Google Scholar 

  17. L. C. G. Rogers and David Williams. Diffusions, Markov processes, and martingales. Vol. 2. Cambridge Mathematical Library. Cambridge University Press, Cambridge, 2000. Itô calculus, Reprint of the second (1994) edition.

    Google Scholar 

  18. Alain-Sol Sznitman. A limiting result for the structure of collisions between many independent diffusions. Probab. Theory Related Fields, 81(3):353–381, 1989.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Buchmann, F., Petersen, W. (2006). Weak Approximation of Stopped Dffusions. In: Niederreiter, H., Talay, D. (eds) Monte Carlo and Quasi-Monte Carlo Methods 2004. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-31186-6_3

Download citation

Publish with us

Policies and ethics