Skip to main content

Infinite-Dimensional Highly-Uniform Point Sets Defined via Linear Recurrences in \(\mathbb{F}_{2^w } \)

  • Conference paper
Monte Carlo and Quasi-Monte Carlo Methods 2004

Summary

We construct infinite-dimensional highly-uniform point sets for quasi-Monte Carlo integration. The successive coordinates of each point are determined by a linear recurrence in \(\mathbb{F}_{2^w } \), the finite field with 2w elements where w is an integer, and a mapping from this field to the interval [0, 1). One interesting property of these point sets is that almost all of their two-dimensional projections are perfectly equidistributed. We performed searches for specific parameters in terms of different measures of uniformity and different numbers of points. We give a numerical illustration showing that using randomized versions of these point sets in place of independent random points can reduce the variance drastically for certain functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. L. Kocis and W. J. Whiten. Computational investigations of low-discrepancy sequences. ACM Transactions on Mathematical Software, 23(2):266–294, 1997.

    Article  Google Scholar 

  2. P. L’Ecuyer and C. Lemieux. Variance reduction via lattice rules. Management Science, 46(9):1214–1235, 2000.

    Article  Google Scholar 

  3. P. L’Ecuyer and C. Lemieux. Recent advances in randomized quasi-Monte Carlo methods. In M. Dror, P. L’Ecuyer, and F. Szidarovszky, editors, Modeling Uncertainty: An Examination of Stochastic Theory, Methods, and Applications, pages 419–474. Kluwer Academic Publishers, Boston, 2002.

    Google Scholar 

  4. C. Lemieux and P. L’Ecuyer. Randomized polynomial lattice rules for multivariate integration and simulation. SIAM Journal on Scientific Computing, 24(5):1768–1789, 2003.

    Article  MathSciNet  Google Scholar 

  5. R. Lidl and H. Niederreiter. Introduction to Finite Fields and Their Applications. Cambridge University Press, Cambridge, revised edition, 1994.

    Google Scholar 

  6. H. Niederreiter. Random Number Generation and Quasi-Monte Carlo Methods, volume 63 of SIAM CBMS-NSF Regional Conference Series in Applied Mathematics. SIAM, Philadelphia, 1992.

    Google Scholar 

  7. H. Niederreiter. Constructions of (t, m, s)-nets and (t, s)-sequences. Finite Fields and Their Applications, 2005. To appear.

    Google Scholar 

  8. A. B. Owen. Latin supercube sampling for very high-dimensional simulations. ACM Transactions on Modeling and Computer Simulation, 8(1):71–102, 1998.

    Article  MATH  Google Scholar 

  9. A. B. Owen. Variance with alternative scramblings of digital nets. ACM Transactions on Modeling and Computer Simulation, 13(4):363–378, 2003.

    Article  Google Scholar 

  10. F. Panneton. Construction d’ensembles de points basée sur des récurrences linéaires dans un corps fini de caractéristique 2 pour la simulation Monte Carlo et l’intégration quasi-Monte Carlo. PhD thesis, Département d’informatique et de recherche opérationnelle, Université de Montréal, Canada, 2004.

    Google Scholar 

  11. F. Panneton and P. L’Ecuyer. Random number generators based on linear recurrences in F2w. In H. Niederreiter, editor, Monte Carlo and Quasi-Monte Carlo Methods 2002, pages 367–378, Berlin, 2004. Springer-Verlag.

    Google Scholar 

  12. I. H. Sloan and S. Joe. Lattice Methods for Multiple Integration. Clarendon Press, Oxford, 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Panneton, F., L’Ecuyer, P. (2006). Infinite-Dimensional Highly-Uniform Point Sets Defined via Linear Recurrences in \(\mathbb{F}_{2^w } \). In: Niederreiter, H., Talay, D. (eds) Monte Carlo and Quasi-Monte Carlo Methods 2004. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-31186-6_25

Download citation

Publish with us

Policies and ethics