Skip to main content

Quasi-Monte Carlo for Integrands with Point Singularities at Unknown Locations

  • Conference paper
Monte Carlo and Quasi-Monte Carlo Methods 2004

Summary

This article considers quasi-Monte Carlo sampling for integrands having isolated point singularities. It is usual for such singular functions to be approached via importance sampling. Indeed one might expect that very uniform sampling, such as QMC uses, should be unhelpful in such problems, and the Koksma-Hlawka inequality seems to indicate as much. Perhaps surprisingly, we find that the expected errors in randomized QMC converge to zero at a faster rate than holds for Monte Carlo sampling, under growth conditions for which 2 + ε moments of the integrand are finite. The growth conditions do place constraints on certain partial derivatives of the integrand, but unlike importance sampling, they do not require knowledge of the locations of the singularities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aldins, J., Brodsky, S. J., Dufner, A. J. & Kinoshita, T. (1970), ‘Moments of the muon and electron’, Physical Review D 1(8), 2378–2395.

    Article  Google Scholar 

  2. Chung, K.-L. (1974), A Course in Probability Theory, 2nd edn, Academic Press, New York.

    Google Scholar 

  3. de Doncker, E. & Guan, Y. (2003), ‘Error bounds for the integration of singular functions using equidistributed sequences’, Journal of Complexity 19(3), 259–271.

    Article  MathSciNet  Google Scholar 

  4. Fréchet, M. (1910), ‘Extension au cas des intégrales multiples d’une définition de l’intégrale due à Stieltjes’, Nouvelles Annales de Mathématiques 10, 241–256.

    MATH  Google Scholar 

  5. Hartinger, J. & Kainhofer, R. F. (2005), Non-uniform low-discrepancy sequence generation and integration of singular integrands, in H. Niederreiter & D. Talay, eds, ‘Proceedings of MC2QMC2004, Juan-Les-Pins France, June 2004’, Springer-Verlag, Berlin.

    Google Scholar 

  6. Hartinger, J., Kainhofer, R. F. & Tichy, R. F. (2004), ‘Quasi-Monte Carlo algorithms for unbounded, weighted integration problems’, Journal of Complexity 20(5), 654–668.

    Article  MathSciNet  Google Scholar 

  7. Hlawka, E. (1961), ‘Funktionen von beschränkter Variation in der Theorie der Gleichverteilung’, Annali di Matematica Pura ed Applicata 54, 325–333.

    Article  MATH  MathSciNet  Google Scholar 

  8. Klinger, B. (1997a), Discrepancy of Point Sequences and Numerical Integration, PhD thesis, Technische Universität Graz.

    Google Scholar 

  9. Klinger, B. (1997b), ‘Numerical integration of singular integrands using low-discrepancy sequences’, Computing 59, 223–236.

    MATH  MathSciNet  Google Scholar 

  10. Lehman, R. S. (1955), ‘Approximation of improper integrals by sums over multiples of irrational numbers’, Pacific Journal of Mathematics 5, 93–102.

    MATH  MathSciNet  Google Scholar 

  11. Niederreiter, H. (1992), Random Number Generation and Quasi-Monte Carlo Methods, S.I.A.M., Philadelphia, PA.

    Google Scholar 

  12. Owen, A. B. (2005), Multidimensional variation for quasi-Monte Carlo, in J. Fan & G. Li, eds, ‘International Conference on Statistics in honour of Professor Kai-Tai Fang’s 65th birthday’.

    Google Scholar 

  13. Owen, A. B. (2006), ‘Halton sequences avoid the origin’, SIAM Review 48. To appear.

    Google Scholar 

  14. Sobol’, I. M. (1973), ‘Calculation of improper integrals using uniformly distributed sequences’, Soviet Math Dokl 14(3), 734–738.

    Google Scholar 

  15. Young, W. H. (1913), Proceedings of the London Mathematical Society (2) 11, 142.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Owen, A.B. (2006). Quasi-Monte Carlo for Integrands with Point Singularities at Unknown Locations. In: Niederreiter, H., Talay, D. (eds) Monte Carlo and Quasi-Monte Carlo Methods 2004. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-31186-6_24

Download citation

Publish with us

Policies and ethics