Skip to main content

Lattice Rules for Multivariate Approximation in the Worst Case Setting

  • Conference paper
Monte Carlo and Quasi-Monte Carlo Methods 2004

Summary

We develop algorithms for multivariate approximation in weighted Korobov spaces of smooth periodic functions of d variables. Our emphasis is on large d. The smoothness of functions is characterized by the parameter α>1 that controls the decay of Fourier coefficients in the L2 norm. The weight γj of the Korobov space moderates the behaviour of functions with respect to the jth variable. Small γj means that functions depend weakly on the jth variable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Dick, On the convergence rate of the component-by-component construction of good lattice rules, J. Complexity, 20, 493–522 (2004).

    Article  MathSciNet  Google Scholar 

  2. J. Dick and F. Y. Kuo, Reducing the construction cost of the component-by-component construction of good lattice rules, Math. Comp., 73, 1967–1988 (2004).

    Article  MathSciNet  Google Scholar 

  3. J. Dick and F. Y. Kuo, Constructing good lattice rules with millions of points, Monte Carlo and Quasi-Monte Carlo Methods 2002 (H. Niederreiter, ed.), Springer-Verlag, 181–197 (2004).

    Google Scholar 

  4. J. Dick, I. H. Sloan, X. Wang, and H. Woźniakowski, Liberating the weights, J. Complexity, 20, 593–623 (2004).

    Article  MathSciNet  Google Scholar 

  5. F. J. Hickernell and H. Woźniakowski, Tractability of multivariate integration for periodic functions, J. Complexity, 17, 660–682 (2001).

    Article  MathSciNet  Google Scholar 

  6. N. M. Korobov, Properties and calculation of optimal coefficients, Doklady Akademii Nauk SSSR, 132, 1009–1012 (1960); English translation in Soviet Math. Dokl., 1, 696–700 (1960).

    MATH  MathSciNet  Google Scholar 

  7. N. M. Korobov, Number-theoretic Methods in Approximate Analysis, Fizmatgiz, Moscow, 1963.

    Google Scholar 

  8. F. Y. Kuo, Component-by-component constructions achieve the optimal rate of convergence for multivariate integration in weighted Korobov and Sobolev spaces, J. Complexity, 19, 301–320 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  9. F. Y. Kuo and S. Joe, Component-by-component construction of good lattice rules with a composite number of points, J. Complexity, 18, 943–976 (2002).

    Article  MathSciNet  Google Scholar 

  10. F. Y. Kuo and S. Joe, Component-by-component construction of good intermediate-rank lattice rules, SIAM J. Numer. Anal., 41, 1465–1486 (2003).

    Article  MathSciNet  Google Scholar 

  11. D. Li and F. J. Hickernell, Trigonometric spectral collocation methods on lattices, Recent Advances in Scientific Computing and Partial Differential Equations (S. Y. Cheng, C.-W. Shu, and T. Tang, eds.), AMS Series in Contemporary Mathematics, vol. 330, American Mathematical Society, Providence, Rhode Island, 121–132 (2003).

    Google Scholar 

  12. E. Novak, I. H. Sloan, and H. Woźniakowski, Tractability of approximation for weighted Korobov spaces on classical and quantum computers, Found. Comput. Math., 4, 121–156 (2004).

    Article  MathSciNet  Google Scholar 

  13. D. Nuyens and R. Cools, Fast algorithms for component-by-component construction of rank-1 lattice rules in shift-invariant reproducing kernel Hilbert spaces, Math. Comp., to appear.

    Google Scholar 

  14. I. H. Sloan, F. Y. Kuo, and S. Joe, On the step-by-step construction of quasi-Monte Carlo integration rules that achieve strong tractability error bounds in weighted Sobolev spaces, Math. Comp., 71, 1609–1640 (2002).

    Article  MathSciNet  Google Scholar 

  15. I. H. Sloan, F. Y. Kuo, and S. Joe, Constructing randomly shifted lattice rules in weighted Sobolev spaces, SIAM J. Numer. Anal., 40, 1650–1665 (2002).

    Article  MathSciNet  Google Scholar 

  16. I. H. Sloan and S. Joe, Lattice Methods for Multiple Integration, Oxford University Press, Oxford, 1994.

    Google Scholar 

  17. I. H. Sloan and A. V. Reztsov, Component-by-component construction of good lattice rules, Math. Comp., 71, 263–273 (2002).

    Article  MathSciNet  Google Scholar 

  18. I. H. Sloan and H. Woźniakowski, When are quasi-Monte Carlo algorithms efficient for high dimensional integrals?, J. Complexity, 14, 1–33 (1998).

    Article  MathSciNet  Google Scholar 

  19. I. H. Sloan and H. Woźniakowski, Tractability of multivariate integration for weighted Korobov classes, J. Complexity, 17, 697–721 (2001).

    Article  MathSciNet  Google Scholar 

  20. V. N. Temlyakov, Approximate recovery of periodic functions of several variables, Mat. Sbornik., 128, 256–268 (1985); English translation in Math. USSR Sbornik., 56, 249–261 (1987).

    MATH  MathSciNet  Google Scholar 

  21. V. N. Temlyakov, Reconstruction of multivariate periodic functions based on their values at the knots of number-theoretical nets, Anal. Math., 12, 287–305(1986).

    Article  MATH  MathSciNet  Google Scholar 

  22. V. N. Temlyakov, On approximate recovery of functions with bounded mixed derivative, J. Complexity, 9, 41–59 (1993).

    Article  MATH  MathSciNet  Google Scholar 

  23. J. F. Traub, G. W. Wasilkowski, and H. Woźniakowski, Information-Based Complexity, Academic Press, New York, 1988.

    Google Scholar 

  24. G. W. Wasilkowski and H. Woźniakowski, Weighted tensor product algorithms for linear multivariate problems, J. Complexity, 15, 402–447 (1999).

    Article  MathSciNet  Google Scholar 

  25. G. W. Wasilkowski and H. Woźniakowski, On the power of standard information for weighted approximation, Found. Comput. Math., 1, 417–434 (2001).

    MathSciNet  Google Scholar 

  26. X. Y. Zeng, K. T. Leung, and F. J. Hickernell, Error analysis of splines for periodic problems using lattice designs, Monte Carlo and Quasi-Monte Carlo Methods 2004 (H. Niederreiter and D. Talay, eds.), to appear.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kuo, F.Y., Sloan, I.H., Woźniakowski, H. (2006). Lattice Rules for Multivariate Approximation in the Worst Case Setting. In: Niederreiter, H., Talay, D. (eds) Monte Carlo and Quasi-Monte Carlo Methods 2004. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-31186-6_18

Download citation

Publish with us

Policies and ethics