Skip to main content

Probabilistic Approximation via Spatial Derivation of Some Nonlinear Parabolic Evolution Equations

  • Conference paper
Monte Carlo and Quasi-Monte Carlo Methods 2004

Summary

For some parabolic equations with a local nonlinearity, a suitable spatial derivation leads to a Fokker-Planck equation with a nonlocal nonlinearity. In this paper we present a review of the particle methods obtained by replacing the nonlinearity in this Fokker-Planck equation by interaction. We are interested in the convergence results for the particle approximations of the original equations and give the milestones of their proofs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C.R. Anderson. A vortex method for flows with slight density variations. J. Comp. Physics, 61:417–444, 1985.

    Article  MATH  Google Scholar 

  2. R.F. Bass and E. Pardoux. Uniqueness for Diffusions with Piecewise Constant Coefficients. Probab. Theory and Related Fields, 76:557–572, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  3. S. Benachour, B. Roynette, and P. Vallois. Branching process associated with 2d Navier-Stokes equation. Rev. Mat. Iberoamericana, 17(2):331–373, 2001.

    MathSciNet  MATH  Google Scholar 

  4. M. Bossy. Optimal rate of convergence of a stochastic particle method for the solution of a 1d viscous scalar conservation law. Math. Comput., 73(246):777–812, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  5. M. Bossy, L. Fezoui, and S. Piperno. Comparison of a stochastic particle method and a finite volume deterministic method applied to Burgers equation. Monte Carlo Methods Appl., 3(2):113–140, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  6. M. Bossy and B. Jourdain. Rate of convergence of a particle method for the solution of a 1d viscous scalar conservation law in a bounded interval. Ann. Probab., 30(4):1797–1832, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  7. M. Bossy and D. Talay. Convergence rate for the approximation of the limit law of weakly interacting particles: application to the Burgers equation. Ann. Appl. Probab., 6(3):818–861, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  8. M. Bossy and D. Talay. A stochastic particle method for the McKean-Vlasov and the Burgers equation. Math. Comp., 66(217):157–192, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  9. H. Brezis and M.G. Crandall. Uniqueness of solutions of the initial-value problem for u t — Δφ (u) = 0. J. Math. pures et appl., 58:153–163, 1979.

    MathSciNet  MATH  Google Scholar 

  10. P. Calderoni and M. Pulvirenti. Propagation of chaos for Burgers’ equation. Ann. Inst. Henri Poincaré Section A, 39(1):85–97, 1983.

    MathSciNet  MATH  Google Scholar 

  11. A.J. Chorin. Numerical study of slightly viscous flows J. Fluid Mech. 57:785–793, 1973.

    Article  MathSciNet  Google Scholar 

  12. G.H. Cottet. A vorticity creation algorithm, Mathematical aspects of vortex dynamics, SIAM, Philadelphia PA, 1989.

    Google Scholar 

  13. A.L. Fogelson. Particle-method solution of two-dimensional convection-diffusion equations. J. Comp. Physics, 100:1–16, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  14. B. Jourdain. Diffusions with a nonlinear irregular drift coefficient and probabilistic interpretation of generalized Burgers’ equations. ESAIM, Probab. Stat. (http://www.emath.fr/ps/), 1:339–355, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  15. B. Jourdain. Diffusion processes associated with nonlinear evolution equations for signed measures. Methodol. Comput. Appl. Probab., 2(1):69–91, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  16. B. Jourdain. Probabilistic approximation for a porous medium equation. Stochastic Process. Appl., 89(1):81–99, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  17. B. Jourdain. Probabilistic gradient approximation for a viscous scalar conservation law in space dimension d ≥ 2. Stochastics Stochastics Rep., 71:243–268, 2001.

    MATH  MathSciNet  Google Scholar 

  18. B. Jourdain. Probabilistic characteristics method for a 1d scalar conservation law. Ann. Appl. Probab., 12(1):334–360, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  19. B. Jourdain and S. Méléard. Probabilistic interpretation and particle method for vortex equations with Neumann’s boundary condition. Proc. Edinburgh Math. Soc., 47(3), pp 597–624, 2004.

    Article  MATH  Google Scholar 

  20. B. Jourdain, S. Méléard, and W. Woyczynski. Probabilistic approximation and inviscid limits for 1-d fractional conservation laws. Bernoulli, to appear.

    Google Scholar 

  21. N.V. Krylov. Some estimates of the probability density of a stochastic integral. Math. USSR Izvestija, 8(1):233–254, 1974.

    Article  MathSciNet  Google Scholar 

  22. D. Lépingle. Euler scheme for reflected stochastic differential equations. Math. Comput. Simul., 38(1–3):119–126, 1995.

    Article  MATH  Google Scholar 

  23. C. Marchioro and M. Pulvirenti. Hydrodynamics in two dimensions and vortex theory. Comm. Math. Phys., 84:483–503, 1982.

    Article  MathSciNet  MATH  Google Scholar 

  24. S. Méléard. A trajectorial proof of the vortex method for the two-dimensional Navier Stokes equations. Ann. Appl. Probab., 10(4):1197–1211, 2000.

    MATH  MathSciNet  Google Scholar 

  25. S. Méléard. Monte-Carlo approximations for 2d Navier-Stokes equation with measure initial data. Probab. Theory Relat. Fields, 121:367–388, 2001.

    MATH  Google Scholar 

  26. K. Oelschläger. A law of large numbers for moderately interacting diffusion processes. Z. Warsch. Verw. Geb., 69:279–322, 1985.

    MATH  Google Scholar 

  27. B. Roynette and P. Vallois. Instabilité de certaines equations différentielles stochastiques non linéaires. J. Funct. Anal., 130(2):477–523, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  28. A. Sherman and M. Mascagni. A gradient random walk method for two-dimensional reaction-diffusion equations. SIAM J. Sci. Comput., 15(6):1280–1293, november 1994.

    Article  MathSciNet  MATH  Google Scholar 

  29. T. Shiga and H. Tanaka. Central Limit Theorem for a System of Markovian Particles with Mean Field Interactions. Z. Warsch. Verw. Geb., 69:439–459, 1985.

    Article  MathSciNet  MATH  Google Scholar 

  30. D.W. Stroock and S.R.S. Varadhan. Multidimensional Diffusion Processes. Springer, 1997.

    Google Scholar 

  31. A.S. Sznitman. A propagation of chaos result for Burgers’ Equation. Probab. Theory Relat. Fields, 71:581–613, 1986.

    Article  MATH  MathSciNet  Google Scholar 

  32. A.S. Sznitman. Topics in propagation of chaos. In Ecole d’été de probabilités de Saint-Flour XIX-1989, Lect. Notes in Math. 1464. Springer-Verlag, 1991.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jourdain, B. (2006). Probabilistic Approximation via Spatial Derivation of Some Nonlinear Parabolic Evolution Equations. In: Niederreiter, H., Talay, D. (eds) Monte Carlo and Quasi-Monte Carlo Methods 2004. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-31186-6_13

Download citation

Publish with us

Policies and ethics