Skip to main content

Molecular Biology of Lung Cancer

  • Chapter
Tumors of the Chest

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000; 100(1):57.

    Article  PubMed  CAS  Google Scholar 

  2. Fong KM, Sekido Y, Gazdar AF, Minna JD. Lung cancer. 9: Molecular biology of lung cancer: clinical implications. Thorax 2003; 58(10):892.

    Article  PubMed  CAS  Google Scholar 

  3. Wistuba II, Mao L, Gazdar AF. Smoking molecular damage in bronchial epithelium. Oncogene 2002; 21(48):7298.

    Article  PubMed  CAS  Google Scholar 

  4. Jemal A, Murray T, Ward E, et al. Cancer statistics, 2005. CA Cancer J Clin 2005; 55(1):10.

    Article  PubMed  Google Scholar 

  5. Amos CI, Xu W, Spitz MR. Is there a genetic basis for lung cancer susceptibility? Recent Results Cancer Res 1999; 151:3.

    PubMed  CAS  Google Scholar 

  6. Peto R, Chen ZM, Boreham J. Tobacco the growing epidemic. Nat Med 1999; 5(1):15.

    Article  PubMed  CAS  Google Scholar 

  7. Xu H, Spitz MR, Amos CI, Shete S. Complex segregation analysis reveals a multigene model for lung cancer. Hum Genet 2005; 116(12):121.

    Article  PubMed  Google Scholar 

  8. Bailey-Wilson JE, Amos CI, Pinney SM, et al. A major lung cancer susceptibility locus maps to chromosome 6q23-25. Am J Hum Genet 2004; 75(3):460.

    Article  PubMed  CAS  Google Scholar 

  9. Shen H, Spitz MR, Qiao Y, et al. Smoking, DNA repair capacity and risk of nonsmall cell lung cancer. Int J Cancer 2003; 107(1):84.

    Article  PubMed  CAS  Google Scholar 

  10. Wu X, Roth JA, Zhao H, et al. Cell cycle checkpoints, DNA damage/repair, and lung cancer risk. Cancer Res 2005; 65(1):349.

    PubMed  CAS  Google Scholar 

  11. Wistuba II, Gazdar AF, Minna JD. Molecular genetics of small cell lung carcinoma. Semin Oncol 2001; 28(2 Suppl 4):3.

    Article  PubMed  CAS  Google Scholar 

  12. Minna JD, Gazdar A. Focus on lung cancer. Cancer Cell 2002; 1:49.

    Article  PubMed  CAS  Google Scholar 

  13. Andratschke N, Kittmann K, Mason K, et al. Epidermal growth factor receptor as a target to improve treatment of lung cancer. Clin Lung Cancer 2004; 5:340.

    PubMed  CAS  Google Scholar 

  14. Herbst RS. Review of epidermal growth factor receptor biology. Int J Radiat Oncol Biol Phys 2004; 59(2 Suppl):21.

    Article  PubMed  CAS  Google Scholar 

  15. Milas L, Fan Z, Mason K, Ang K. Role of epidermal growth factor receptor and its inhibition in radiotherapy. In: Nieder C, Milas L, Ang K (eds) Modification of Radia tion Response: Cytokines, Growth Factors and Other Bio logical Targets. Springer-Verlag, Berlin-Heidelberg-New York; 2003; p 189.

    Google Scholar 

  16. Gazdar AF, Shigematsu H, Herz J, Minna JD. Mutations and addiction to EGFR: the Achilles ‘heal’ of lung cancers? Trends Mol Med 2004; 10(10):481.

    Article  PubMed  CAS  Google Scholar 

  17. Herbst RS, Sandier AB. Overview of the current status of human epidermal growth factor receptor inhibitors in lung cancer. Clin Lung Cancer 2004; 6Suppl 1:S7.

    Article  PubMed  CAS  Google Scholar 

  18. Fukuoka M, Yano S, Giaccone G, et al. Multi-institutional randomized phase II trial of gefitinib for previously treated patients with advanced non-small-cell lung cancer (The IDEAL 1 Trial) [corrected]. J Clin Oncol 2003; 21(12):2237.

    Article  PubMed  CAS  Google Scholar 

  19. Herbst RS, Fukuoka M, Baselga J. Gefitinib a novel targeted approach to treating cancer. Nat Rev Cancer 2004; 4(12):956.

    Article  PubMed  CAS  Google Scholar 

  20. Lynch TJ, Bell DW, Sordella R, et al. Activating mutations in the epidermal growth factor receptor underlying re sponsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 2004; 350(21):2129.

    Article  PubMed  CAS  Google Scholar 

  21. Paez JG, Janne PA, Lee JC, et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib ther apy. Science 2004; 304(5676):1497.

    Article  PubMed  CAS  Google Scholar 

  22. Shigematsu H, Lin L, Takahashi T, et al. Clinical and bio logical features of epidermal growth factor receptor muta tions in lung cancers. J Natl Cancer Inst 2005; 97(5):339.

    Article  PubMed  CAS  Google Scholar 

  23. Lee JW, Soung YH, Kim SY, et al. Absence of EGFR mutation in the kinase domain in common human cancers besides non-small cell lung cancer. Int J Cancer 2005; 113(3):510.

    Article  PubMed  CAS  Google Scholar 

  24. Huang SF, Liu HP, Li LH, et al. High frequency of epidermal growth factor receptor mutations with complex pat terns in non-small cell lung cancers related to gefitinib re sponsiveness in Taiwan. Clin Cancer Res 2004; 10(24):8195.

    Article  PubMed  CAS  Google Scholar 

  25. Kosaka T, Yatabe Y, Endoh H, Kuwano H, Takahashi T, Mitsudomi T. Mutations of the epidermal growth factor receptor gene in lung cancer: biological and clinical impli cations. Cancer Res 2004; 64(24):8919.

    Article  PubMed  CAS  Google Scholar 

  26. Pao W, Miller V, Zakowski M, et al. EGF receptor gene mutations are common in lung cancers from “never smokers” and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc Natl Acad Sci U S A 2004; 101(36):13306.

    Article  PubMed  CAS  Google Scholar 

  27. Tokumo M, Toyooka S, Kiura K, et al. The relationship between epidermal growth factor receptor mutations and clinicopathologic features in non-small cell lung cancers. Clin Cancer Res 2005; 11(3):1167.

    PubMed  CAS  Google Scholar 

  28. Amann J, Kalyankrishna S, Massion PP, et al. Aberrant epidermal growth factor receptor signaling and enhanced sensitivity to EGFR inhibitors in lung cancer. Cancer Res 2005; 65(1):226.

    PubMed  CAS  Google Scholar 

  29. Sordella R, Bell DW, Haber DA, Settleman J. Gefitinib-sensitizing EGFR mutations in lung cancer activate antiapoptotic pathways. Science 2004; 305(5687):1163.

    Article  PubMed  CAS  Google Scholar 

  30. Kobayashi S, Boggon TJ, Dayaram T, et al. EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N Engl J Med 2005; 352(8):786.

    Article  PubMed  CAS  Google Scholar 

  31. Pao W, Miller VA, Politi KA, et al. Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is asso ciated with a second mutation in the EGFR kinase do main. PLoS Med 2005; 2(3):1.

    Article  CAS  Google Scholar 

  32. Rachwal WJ, Bongiorno PF, Orringer MB, Whyte RI, Ethier SP, Beer DG. Expression and activation of erbB-2 and epidermal growth factor receptor in lung adenocarcinomas. Br J Cancer 1995; 72(1):56.

    PubMed  CAS  Google Scholar 

  33. Yu D, Wang SS, Dulski KM, Tsai CM, Nicolson GL, Hung MC. c-erbB-2/neu overexpression enhances metastatic potential of human lung cancer cells by induction of metastasis-associated properties. Cancer Res 1994; 54(12):3260.

    PubMed  CAS  Google Scholar 

  34. Brabender J, Danenberg KD, Metzger R, et al. Epidermal growth factor receptor and HER2-neu mRNA expression in non-small cell lung cancer is correlated with survival. Clin Cancer Res 2001; 7(7):1850.

    PubMed  CAS  Google Scholar 

  35. Kern JA, Slebos RJ, Top B, et al. C-erbB-2 expression and codon 12 K-ras mutations both predict shortened survival for patients with pulmonary adenocarcinomas. J Clin Invest 1994; 93(2):516.

    Article  PubMed  CAS  Google Scholar 

  36. Stephens P, Hunter C, Bignell G, et al. Lung cancer: intragenic ERBB2 kinase mutations in tumours. Nature 2004; 431(7008):525.

    Article  PubMed  CAS  Google Scholar 

  37. Brose MS, Volpe P, Feldman M, et al. BRAF and RAS mutations in human lung cancer and melanoma. Cancer Res 2002; 62(23):6997.

    PubMed  CAS  Google Scholar 

  38. Samuels Y, Wang Z, Bardelli A, et al. High frequency of mutations of the PIK3CA gene in human cancers. Science 2004; 304(5670):554.

    Article  PubMed  CAS  Google Scholar 

  39. Slebos RJ, Rodenhuis S. The ras gene family in human non-small-cell lung cancer. Monogr Natl Cancer Inst 1992; 13:23.

    PubMed  Google Scholar 

  40. Johnson L, Mercer K, Greenbaum D, et al. Somatic activa tion of the K-ras oncogene causes early onset lung cancer in mice. Nature 2001; 410(6832):1111.

    Article  PubMed  CAS  Google Scholar 

  41. Grandori C, Eisenman RN. Myc target genes. Trends Biochem Sci 1997; 22(5):177.

    Article  PubMed  CAS  Google Scholar 

  42. Viallet J, Sausville EA. Involvement of signal transduction pathways in lung cancer biology. J Cell Biochem Suppl 1996; 24:228.

    Article  PubMed  CAS  Google Scholar 

  43. Jerome L, Shiry L, Leyland-Jones B. Deregulation of the IGF axis in cancer: epidemiological evidence and potential therapeutic interventions. Endocr Relat Cancer 2003; 10(4):561.

    Article  PubMed  CAS  Google Scholar 

  44. Jones AV, Cross NC. Oncogenic derivatives of platelet-derived growth factor receptors. Cell Mol Life Sci 2004; 61(23):2912.

    Article  PubMed  CAS  Google Scholar 

  45. Maulik G, Kijima T, Ma PC, et al. Modulation of the c-Met/hepatocyte growth factor pathway in small cell lung cancer. Clin Cancer Res 2002; 8(2):620.

    PubMed  CAS  Google Scholar 

  46. Knudson AG. Hereditary cancers disclose a class of cancer genes. Cancer 1989; 63(1888):1888.

    Article  PubMed  Google Scholar 

  47. Girard L, Zochbauer-Muller S, Virmani AK, Gazdar AF, Minna JD. Genome-wide allelotyping of lung cancer identifies new regions of allelic loss, differences between small cell lung cancer and non-small cell lung cancer, and loci clustering. Cancer Res 2000; 60(17):4894.

    PubMed  CAS  Google Scholar 

  48. Sekido Y, Fong KM, Minna JD. Progress in understanding the molecular pathogenesis of human lung cancer. Biochim Biophys Acta 1998; 1378(1):F21.

    PubMed  CAS  Google Scholar 

  49. Virmani AK, Fong KM, Kodagoda D, et al. Allelotyping demonstrates common and distinct patterns of chromoso mal loss in human lung cancer types. Genes Chromosomes Cancer 1998; 21(4):308.

    Article  PubMed  CAS  Google Scholar 

  50. Wistuba II, Behrens C, Virmani AK, et al. Allelic losses at chromosome 8p21-23 are early and frequent events in the pathogenesis of lung cancer. Cancer Res 1999; 59(8):1973.

    PubMed  CAS  Google Scholar 

  51. Lerman MI, Minna JD. The 630-kb lung cancer homozygous deletion region on human chromosome 3p21.3: identification and evaluation of the resident candidate tumor suppressor genes. The International Lung Cancer Chromosome 3p21.3 Tumor Suppressor Gene Consortium. Cancer Res 2000; 60(21):6116.

    PubMed  CAS  Google Scholar 

  52. Fong KM, Biesterveld EJ, Virmani A, et al. FHIT and FRA3B allele loss are common in lung cancer and preneoplastic bronchial lesions and are associated with cancer-related FHIT cDNA splicing aberrations. Cancer Res 1997; 57:2256.

    PubMed  CAS  Google Scholar 

  53. Sozzi G, Veronese ML, Negrini M, et al. The FHIT gene 3pl4.2 is abnormal in lung cancer. Cell 1996; 85(1):17.

    Article  PubMed  CAS  Google Scholar 

  54. Zochbauer-Muller S, Fong KM, Maitra A, et al. 5′ CpG is land methylation of the FHIT gene is correlated with loss of gene expression in lung and breast cancer. Cancer Res 2001; 61(9):3581.

    PubMed  CAS  Google Scholar 

  55. Geradts J, Fong KM, Zimmerman PV, Minna JD. Loss of Fhit expression in non-small-cell lung cancer: correlation with molecular genetic abnormalities and clinicopathological features. Br J Cancer 2000; 82(6):1191.

    Article  PubMed  CAS  Google Scholar 

  56. Sozzi G, Pastorino U, Moiraghi L, et al. Loss of FHIT function in lung cancer and preinvasive bronchial lesions. Cancer Res 1998; 58(22):5032.

    PubMed  CAS  Google Scholar 

  57. Ji L, Fang B, Yen N, Fong K, Minna JD, Roth JA. Induction of apoptosis and inhibition of tumorigenicity and tumor growth by adenovirus vector-mediated fragile histidine triad (FHIT) gene overexpression [In Process Citation]. Cancer Res 1999; 59(14):3333.

    PubMed  CAS  Google Scholar 

  58. Siprashvili Z, Sozzi G, Barnes LD, et al. Replacement of Fhit in cancer cells suppresses tumorigenicity. Proc Natl Acad Sci U S A 1997; 94(25):13771.

    Article  PubMed  CAS  Google Scholar 

  59. Castro-Rivera E, Ran S, Thorpe P, Minna JD. Semaphorin 3B (SEMA3B) induces apoptosis in lung and breast cancer, whereas VEGF165 antagonizes this effect. Proc Natl Acad Sci U S A 2004; 101(31):11432.

    Article  PubMed  CAS  Google Scholar 

  60. Kuroki T, Trapasso F, Yendamuri S, et al. Allelic loss on chromosome 3p21.3 and promoter hypermethylation of semaphorin 3B in non-small cell lung cancer. Cancer Res 2003; 63(12):3352.

    PubMed  CAS  Google Scholar 

  61. Ito I, Ji L, Tanaka F, et al. Liposomal vector mediated delivery of the 3p FUS1 gene demonstrates potent antitumor activity against human lung cancer in vivo. Cancer Gene Ther 2004; 11(11):733.

    Article  PubMed  CAS  Google Scholar 

  62. Ji L, Nishizaki M, Gao B, et al. Expression of several genes in the human chromosome 3p21.3 homozygous deletion region by an adenovirus vector results in tumor suppressor activities in vitro and in vivo. Cancer Res 2002; 62(9):2715.

    PubMed  CAS  Google Scholar 

  63. Kondo M, Ji L, Kamibayashi C, et al. Overexpression of candidate tumor suppressor gene FUS1 isolated from the 3p21.3 homozygous deletion region leads to Gl arrest and growth inhibition of lung cancer cells. Oncogene 2001; 20(43):6258.

    Article  PubMed  CAS  Google Scholar 

  64. Uno F, Sasaki J, Nishizaki M, et al. Myristoylation of the fusl protein is required for tumor suppression in human lung cancer cells. Cancer Res 2004; 64(9):2969.

    Article  PubMed  CAS  Google Scholar 

  65. Burbee DG, Forgacs E, Zochbauer-Muller S, et al. Epigenetic inactivation of RASSF1A in lung and breast cancers and malignant phenotype suppression. J Natl Cancer Inst 2001; 93(9):691.

    Article  PubMed  CAS  Google Scholar 

  66. Dammann R, Li C, Yoon JH, Chin PL, Bates S, Pfeifer GP. Epigenetic inactivation of a RAS association domain family protein from the lung tumour suppressor locus 3p21.3. Nat Genet 2000; 25(3):315.

    Article  PubMed  CAS  Google Scholar 

  67. Virmani AK, Rathi A, Zochbauer-Muller S, et al. Promoter methylation and silencing of the retinoic acid receptor-beta gene in lung carcinomas. J Natl Cancer Inst 2000; 92(16):1303.

    Article  PubMed  CAS  Google Scholar 

  68. Xian J, Clark KJ, Fordham R, Pannell R, Rabbitts TH, Rabbitts PH. Inadequate lung development and bronchial hyperplasia in mice with a targeted deletion in the Duttl/Robol gene. Proc Natl Acad Sci U S A 2001; 98(26):15062.

    Article  PubMed  CAS  Google Scholar 

  69. Harris CC. p53 Tumor suppressor gene: from the basic research laboratory to the clinic — an abridged historical perspective. Carcinogenesis 1996; 17:1187.

    PubMed  CAS  Google Scholar 

  70. Wistuba II, Berry J, Behrens C, et al. Molecular changes in the bronchial epithelium of patients with small cell lung cancer. Clin Cancer Res 2000; 6(7):2604.

    PubMed  CAS  Google Scholar 

  71. Toyooka S, Tsuda T, Gazdar AF. The TP53 gene, tobacco exposure, and lung cancer. Hum Mutat 2003; 21(3):229.

    Article  PubMed  CAS  Google Scholar 

  72. Denissenko MF, Pao A, Tang M-S, Pfeifer GP. Preferential formation of benz[a]pyrene adducts in lung cancer mutational hotspots in p53. Science 1996; 274:430.

    Article  PubMed  CAS  Google Scholar 

  73. Harbour JW, Sali SL, Whang-Peng J, Gazdar AF, Minna JD, Kaye FJ. Abnormalities in structure and expression of the human retinoblastoma gene in SCLC. Science 1988; 241(353):353.

    PubMed  CAS  Google Scholar 

  74. Cagle PT, el-Naggar AK, Xu HJ, Hu SX, Benedict WE Differential retinoblastoma protein expression in neuroendocrine tumors of the lung. Potential diagnostic implications. Am J Pathol 1997; 150(2):393.

    PubMed  CAS  Google Scholar 

  75. Geradts J, Fong KM, Zimmerman PV, Maynard R, Minna JD. Correlation of abnormal RB, P16ink4a, and p53 expression with 3p loss of heterozygosity, other genetic abnormalities, and clinical features in 103 primary non-small cell lung cancers. Clin Cancer Res 1999; 5(4):791.

    PubMed  CAS  Google Scholar 

  76. Toyooka S, Suzuki M, Maruyama R, et al. The relationship between aberrant methylation and survival in non-small-cell lung cancers. Br J Cancer 2004; 91(4):771.

    PubMed  CAS  Google Scholar 

  77. Li J, Yen C, Liaw D, et al. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast and prostate cancer. Science 1997; 275:1943.

    Article  PubMed  CAS  Google Scholar 

  78. Forgacs E, Biesterveld EJ, Sekido Y, et al. Mutation analysis of the PTEN/MMAC1 gene in lung cancer. Oncogene 1998; 17(12):1557.

    Article  PubMed  CAS  Google Scholar 

  79. Soria JC, Lee HY, Lee JI, et al. Lack of PTEN expression in non-small cell lung cancer could be related to promoter methylation. Clin Cancer Res 2002; 8(5):1178.

    PubMed  CAS  Google Scholar 

  80. Belinsky SA. Gene-promoter hypermethylation as a biomarker in lung cancer. Nat Rev Cancer 2004; 4(9):707.

    Article  PubMed  CAS  Google Scholar 

  81. Herman JG, Baylin SB. Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med 2003; 349(21):2042.

    Article  PubMed  CAS  Google Scholar 

  82. Esteller M, Corn PG, Baylin SB, Herman JG. A gene hypermethylation profile of human cancer. Cancer Res 2001; 61(8):3225.

    PubMed  CAS  Google Scholar 

  83. Herman JG. Epigenetics in lung cancer: focus on progression and early lesions. Chest 2004; 125(5 Suppl): 119S.

    Article  PubMed  CAS  Google Scholar 

  84. Mazieres J, He B, You L, et al. Wnt inhibitory factor-1 is silenced by promoter hypermethylation in human lung cancer. Cancer Res 2004; 64(14):4717.

    Article  PubMed  CAS  Google Scholar 

  85. Sathyanarayana UG, Toyooka S, Padar A, et al. Epigenetic inactivation of laminin-5-encoding genes in lung cancers. Clin Cancer Res 2003; 9(7):2665.

    PubMed  CAS  Google Scholar 

  86. Shigematsu H, Suzuki M, Takahashi T, et al. Aberrant methylation of HIN-1 (high in normal-1) is a frequent event in many human malignancies. Int J Cancer 2005; 113(4):600.

    Article  PubMed  CAS  Google Scholar 

  87. Sunaga N, Miyajima K, Suzuki M, et al. Different roles for caveolin-1 in the development of non-small cell lung cancer versus small cell lung cancer. Cancer Res 2004; 64(12):4277.

    Article  PubMed  CAS  Google Scholar 

  88. Suzuki M, Shigematsu H, Takahashi T, et al. Aberrant methylation of Reprimo in lung cancer. Lung Cancer 2005; 47(3):309.

    Article  PubMed  Google Scholar 

  89. Toyooka S, Maruyama R, Toyooka KO, et al. Smoke exposure, histologic type and geography-related differences in the methylation profiles of non-small cell lung cancer. Int J Cancer 2003; 103(2):153.

    Article  PubMed  CAS  Google Scholar 

  90. Virmani A, Rathi A, Sugio K, et al. Aberrant methylation of TMS1 in small cell, non small cell lung cancer and breast cancer. Int J Cancer 2003; 106(2):198.

    Article  PubMed  CAS  Google Scholar 

  91. Zochbauer-Muller S, Fong KM, Virmani AK, Geradts J, Gazdar AF, Minna JD. Aberrant promoter methylation of multiple genes in non-small cell lung cancers. Cancer Res 2001; 61(1):249.

    PubMed  CAS  Google Scholar 

  92. Toyooka S, Toyooka KO, Maruyama R, et al. DNA methylation profiles of lung tumors. Mol Cancer Ther 2001; 1(1):61.

    PubMed  CAS  Google Scholar 

  93. Tang X, Khuri FR, Lee JJ, et al. Hypermethylation of the death-associated protein (DAP) kinase promoter and aggressiveness in stage I non-small-cell lung cancer. J Natl Cancer Inst 2000; 92(18):1511.

    Article  PubMed  CAS  Google Scholar 

  94. Pezzella F, Turley H, Kuzu I, et al. bcl-2 protein in non-small-cell lung carcinoma. N Engl J Med 1993; 329:690.

    Article  PubMed  CAS  Google Scholar 

  95. Fontanini G, Vignati S, Bigini D, et al. Bcl-2 protein: a prognostic factor inversely correlated to p53 in non-small-cell lung cancer. Br J Cancer 1995; 71(5):1003.

    PubMed  CAS  Google Scholar 

  96. Anton RC, Brown RW, Younes M, Gondo MM, Stephenson MA, Cagle PT. Absence of prognostic significance of bcl-2 immunopositivity in non-small cell lung cancer: analysis of 427 cases. Hum Pathol 1997; 28(9):1079.

    Article  PubMed  CAS  Google Scholar 

  97. Bubb RS, Komaki R, Hachiya T, et al. Association of Ki-67, p53, and bcl-2 expression of the primary non-small-cell lung cancer lesion with brain metastatic lesion. Int J Radiat Oncol Biol Phys 2002; 53(5):1216.

    Article  PubMed  CAS  Google Scholar 

  98. Brambilla E, Negoescu A, Gazzeri S, et al. Apoptosis-related factors p53, Bcl2, and Bax in neuroendocrine lung tumors. Am J Pathol 1996; 149(6):1941.

    PubMed  CAS  Google Scholar 

  99. Shay JW, Zou Y, Hiyama E, Wright WE. Telomerase and cancer. Hum Mol Genet 2001; 10(7):677.

    Article  PubMed  CAS  Google Scholar 

  100. Albanell J, Lonardo F, Rusch V, et al. High telomerase activity in primary lung cancers: association with increased cell proliferation rates and advanced pathologic stage. J Natl Cancer 1997; 89(21):1609.

    Article  CAS  Google Scholar 

  101. Hiyama E, Gollahon L, Kataoka T, et al. Telomerase activity in human breast tumors. J Natl Cancer Inst 1996; 88:116.

    PubMed  CAS  Google Scholar 

  102. Sandier AB, Johnson DH, Herbst RS. Anti-vascular endothelial growth factor monoclonals in non-small cell lung cancer. Clin Cancer Res 2004; 10(12 Pt 2):4258s.

    Article  Google Scholar 

  103. Folkman J. The role of angiogenesis in tumor growth. Semin Cancer Biol 1992; 3(2):65.

    PubMed  CAS  Google Scholar 

  104. Asahara T, Takahashi T, Masuda H, et al. VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells. EMBO J 1999; 18(14):3964.

    Article  PubMed  CAS  Google Scholar 

  105. Ferrara N. Role of vascular endothelial growth factor in the regulation of angiogenesis. Kidney Int 1999; 56(3):794.

    Article  PubMed  CAS  Google Scholar 

  106. Yuan A, Yu CJ, Kuo SH, et al. Vascular endothelial growth factor 189 mRNA isoform expression specifically correlates with tumor angiogenesis, patient survival, and postoperative relapse in non-small-cell lung cancer. J Clin Oncol 2001; 19(2):432.

    PubMed  CAS  Google Scholar 

  107. Koukourakis MI, Giatromanolaki A, Thorpe PE, et al. Vascular endothelial growth factor/KDR activated microvessel density versus CD31 standard microvessel density in non-small cell lung cancer. Cancer Res 2000; 60(11):3088.

    PubMed  CAS  Google Scholar 

  108. Fontanini G, Lucchi M, Vignati S, et al. Angiogenesis as a prognostic indicator of survival in non-small-cell lung carcinoma: a prospective study. J Natl Cancer Inst 1997; 89(12):881.

    Article  PubMed  CAS  Google Scholar 

  109. Manda R, Kohno T, Niki T, et al. Differential expression of the LAMB3 and LAMC2 genes between small cell and non-small cell lung carcinomas. Biochem Biophys Res Commun 2000; 275(2):440.

    Article  PubMed  CAS  Google Scholar 

  110. Colby TV, Wistuba, II, Gazdar A. Precursors to pulmonary neoplasia. Adv Anat Pathol 1998; 5(4):205.

    PubMed  CAS  Google Scholar 

  111. Betticher DC, Heighway J, Thatcher N, Hasleton PS. Abnormal expression of CCND1 and RB1 in resection margin epithelia of lung cancer patients. Br J Cancer 1997; 75(12):1761.

    PubMed  CAS  Google Scholar 

  112. Nuorva K, Soini Y, Kamel D, et al. Concurrent p53 expression in bronchial dysplasias and squamous cell lung carcinomas. Am J Pathol 1993; 142:725.

    PubMed  CAS  Google Scholar 

  113. Smith AL, Hung J, Walker L, et al. Extensive areas of aneuploidy are present in the respiratory epithelium of lung cancer patients. Br J Cancer 1996; 73:203.

    PubMed  CAS  Google Scholar 

  114. Westra WH, Baas IO, Hruban RH, et al. K-ras oncogene activation in atypical alveolar hyperplasias of the human lung. Cancer Res 1996; 56:2224.

    PubMed  CAS  Google Scholar 

  115. Kitamura H, Kameda Y, Ito T, Hayashi H. Atypical adenomatous hyperplasia of the lung. Implications for the pathogenesis of peripheral lung adenocarcinoma [see comments]. Am J Clin Pathol 1999; 111(5):610.

    PubMed  CAS  Google Scholar 

  116. Ahrendt SA, Chow JT, Xu LH, et al. Molecular detection of tumor cells in bronchoalveolar lavage fluid from patients with early stage lung cancer. J Natl Cancer Inst 1999; 91(4):332.

    Article  PubMed  CAS  Google Scholar 

  117. Lang SM, Stratakis DF, Freudling A, et al. Detection of K-ras and p53 mutations in bronchoscopically obtained malignant and non-malignant tissue from patients with non-small cell lung cancer. Eur J Med Res 2000; 5(8):341.

    PubMed  CAS  Google Scholar 

  118. Sundaresan V, Ganly P, Hasleton P, et al. p53 and chromosome 3 abnormalities, characteristic of malignant lung tumours, are detectable in preinvasive lesions of the bronchus. Oncogene 1992; 7:1989.

    PubMed  CAS  Google Scholar 

  119. Franklin WA, Gazdar AF, Haney J, et al. Widely dispersed p53 mutation in respiratory epithelium. J Clin In vest 1997; 100:2133.

    CAS  Google Scholar 

  120. Wistuba II, Behrens C, Virmani AK, et al. High resolution chromosome 3p allelotyping of human lung cancer and preneoplastic/preinvasive bronchial epithelium reveals multiple, discontinuous sites of 3p allele loss and three regions of frequent breakpoints. Cancer Res 2000; 60(7):1949.

    PubMed  CAS  Google Scholar 

  121. Wistuba II, Behrens C, Milchgrub S, et al. Sequential molecular abnormalities are involved in the multistage development of squamous cell lung carcinoma. Oncogene 1999; 18:643.

    Article  PubMed  CAS  Google Scholar 

  122. Belinsky SA, Nikula KJ, Palmisano WA, et al. Aberrant methylation of P16(INK4a) is an early event in lung cancer and a potential biomarker for early diagnosis. Proc Nafl Acad Sci U S A 1998; 95(20):11891.

    Article  CAS  Google Scholar 

  123. Palmisano WA, Divine KK, Saccomanno G, et al. Predicting lung cancer by detecting aberrant promoter methylation in sputum. Cancer Res 2000; 60(21):5954.

    PubMed  CAS  Google Scholar 

  124. Yashima K, Litzky LA, Kaiser L, et al. Telomerase expression in respiratory epithelium during the multistage pathogenesis of lung carcinomas. Cancer Res 1997; 57(12):2373.

    PubMed  CAS  Google Scholar 

  125. Peto R, Darby S, Deo H, Silcocks P, Whitley E, Doll R. Smoking, smoking cessation, and lung cancer in the UK since 1950: combination of national statistics with two case-control studies. BMJ 2000; 321(7257):323.

    Article  PubMed  CAS  Google Scholar 

  126. Mao L, Lee JS, Kurie JM, et al. Clonal genetic alterations in the lungs of current and former smokers. J Natl Cancer Inst 1997; 89:857–862.

    Article  PubMed  CAS  Google Scholar 

  127. Wistuba II, Lam S, Behrens C, et al. Molecular damage in the bronchial epithelium of current and former smokers. J Natl Cancer Inst 1997; 89:1366.

    Article  PubMed  CAS  Google Scholar 

  128. Zochbauer-Muller S, Lam S, Toyooka S, et al. Aberrant methylation of multiple genes in the upper aerodigestive tract epithelium of heavy smokers. Int J Cancer 2003; 107(4):612.

    Article  PubMed  CAS  Google Scholar 

  129. Soria JC, Rodriguez M, Liu DD, Lee JJ, Hong WK, Mao L. Aberrant promoter methylation of multiple genes in bronchial brush samples from former cigarette smokers. Cancer Res 2002; 62(2):351.

    PubMed  CAS  Google Scholar 

  130. Belinsky SA, Palmisano WA, Gilliland FD, et al. Aberrant promoter methylation in bronchial epithelium and sputum from current and former smokers. Cancer Res 2002; 62(8):2370.

    PubMed  CAS  Google Scholar 

  131. Yanagisawa K, Shyr Y, Xu BJ, et al. Proteomic patterns of tumour subsets in non-small-cell lung cancer. Lancet 2003; 362(9382):433.

    Article  PubMed  CAS  Google Scholar 

  132. Beer DG, Kardia SL, Huang CC, et al. Gene-expression profiles predict survival of patients with lung adenocarcinoma. Nat Med 2002; 8(8):816.

    PubMed  CAS  Google Scholar 

  133. Bhattacharjee A, Richards WG, Staunton J, et al. Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses. Proc Natl Acad Sci U S A 2001; 98(24):13790.

    Article  PubMed  CAS  Google Scholar 

  134. Wilkins-Haug L. The emerging genetic theories of unstable DNA, uniparental disomy, and imprinting. Curr Opin Obstet Gynecol 1993; 5:179.

    PubMed  CAS  Google Scholar 

  135. Caprioli RM, Farmer TB, Gile J. Molecular imaging of biological samples: localization of peptides and proteins using MALDI-TOF MS. Anal Chem 1997; 69(23):4751.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Wistuba, I.I., Liao, Z., Milas, L. (2006). Molecular Biology of Lung Cancer. In: Syrigos, K.N., Nutting, C.M., Roussos, C. (eds) Tumors of the Chest. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-31040-1_6

Download citation

  • DOI: https://doi.org/10.1007/3-540-31040-1_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-31039-6

  • Online ISBN: 978-3-540-31040-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics