Skip to main content

Ischemic Stroke: Basic Pathophysiology and Neuroprotective Strategies

  • Chapter
Acute Ischemic Stroke

1.12 Conclusion

Several complex and overlapping pathways underlie the pathophysiology of cell death after ischemic stoke. While pharmaceutical agents can inhibit these pathways at various levels, resulting in effective neuroprotection in experimental models, no single agent intended for neuroprotection has been shown to improve outcome in clinical stroke trials. Refinements in patient selection, brain imaging, and methods of drug delivery, as well as the use of more clinically relevant animal stroke models and use of combination therapies that target the entire neurovascular unit are warranted to make stroke neuroprotection an achievable goal. Ongoing trials assessing the efficacy of thrombolysis with neuroprotective agents, and strategies aimed at extending the therapeutic window for reperfusion therapy promise to enhance the known benefits of reperfusion therapy. Most investigators agree that genomics and proteomics are the most promising recent developments impacting the future of stroke prevention, diagnosis, treatment, and outcome. Although many challenges lie ahead, an attitude of cautious optimism seems justified at this time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barone FC, Feuerstein GZ (1999) Inflammatory mediators and stroke: new opportunities for novel therapeutics. J Cereb Blood Flow Metab 19:819–834

    CAS  PubMed  Google Scholar 

  2. Shimizu-Sasamata M, Bosque-Hamilton P, Huang PL, Moskowitz MA, Lo EH (1998) Attenuated neurotransmitter release and spreading depression-like depolarizations after focal ischemia in mutant mice with disrupted type I nitric oxide synthase gene. J Neurosci 18:9564–9571

    CAS  PubMed  Google Scholar 

  3. Wang X, Shimizu-Sasamata M, Moskowitz MA, Newcomb R, Lo EH (2001) Profiles of glutamate and GABA efflux in core versus peripheral zones of focal cerebral ischemia in mice. Neurosci Lett 313:121–124

    Article  CAS  PubMed  Google Scholar 

  4. Hossmann KA (1996) Periinfarct depolarizations. Cerebrovasc Brain Metab Rev 8:195–208

    CAS  PubMed  Google Scholar 

  5. Bruno V, Battaglia G, Copani A, D’Onofrio M, Di Iorio P, De Blasi A, Melchiorri D, Flor PJ, Nicoletti F (2001) Metabotropic glutamate receptor subtypes as targets for neuroprotective drugs. J Cereb Blood Flow Metab 21:1013–1033

    CAS  PubMed  Google Scholar 

  6. Michaelis EK (1998) Molecular biology of glutamate receptors in the central nervous system and their role in excitotoxicity, oxidative stress and aging. Prog Neurobiol 54:369–415

    Article  CAS  PubMed  Google Scholar 

  7. Pellegrini-Giampietro DE, Zukin RS, Bennett MV, Cho S, Pulsinelli WA (1992) Switch in glutamate receptor subunit gene expression in CA1 subfield of hippocampus following global ischemia in rats. Proc Natl Acad Sci USA 89:10499–10503

    CAS  PubMed  Google Scholar 

  8. Oguro K, Oguro N, Kojima T, Grooms SY, Calderone A, Zheng X, Bennett MV, Zukin RS (1999) Knockdown of AMPA receptor GluR2 expression causes delayed neurodegeneration and increases damage by sublethal ischemia in hippocampal CA1 and CA3 neurons. J Neurosci 19:9218–9227

    CAS  PubMed  Google Scholar 

  9. Morikawa E, Mori H, Kiyama Y, Mishina M, Asano T, Kirino T (1998) Attenuation of focal ischemic brain injury in mice deficient in the epsilon1 (NR2A) subunit of NMDA receptor. J Neurosci 18:9727–9732

    CAS  PubMed  Google Scholar 

  10. Calabresi P, Centonze D, Gubellini P, Marfia GA, Pisani A, Sancesario G, Bernardi G (2000) Synaptic transmission in the striatum: from plasticity to neurodegeneration. Prog Neurobiol 61:231–265

    Article  CAS  PubMed  Google Scholar 

  11. Horn J, Limburg M (2001) Calcium antagonists for ischemic stroke: a systematic review. Stroke 32:570–576

    CAS  PubMed  Google Scholar 

  12. Paschen W (2000) Role of calcium in neuronal cell injury: which subcellular compartment is involved? Brain Res Bull 53:409–413

    Article  CAS  PubMed  Google Scholar 

  13. Zipfel GJ, Lee JM, Choi DW (1999) Reducing calcium overload in the ischemic brain. N Engl J Med 341:1543–1544

    Article  CAS  PubMed  Google Scholar 

  14. Weiss JH, Hartley DM, Koh JY, Choi DW (1993) AMPA receptor activation potentiates zinc neurotoxicity. Neuron 10:43–49

    Article  CAS  PubMed  Google Scholar 

  15. Sorensen JC, Mattsson B, Andreasen A, Johansson BB (1998) Rapid disappearance of zinc positive terminals in focal brain ischemia. Brain Res 812:265–269

    CAS  PubMed  Google Scholar 

  16. Gribkoff VK, Starrett JE Jr., Dworetzky SI, Hewawasam P, Boissard CG, Cook DA, Frantz SW, Heman K, Hibbard JR, Huston K, Johnson G, Krishnan BS, Kinney GG, Lombardo LA, Meanwell NA, Molinoff PB, Myers RA, Moon SL, Ortiz A, Pajor L, Pieschl RL, Post-Munson DJ, Signor LJ, Srinivas N, Taber MT, Thalody G, Trojnacki JT, Wiener H, Yeleswaram K, Yeola SW (2001) Targeting acute ischemic stroke with a calcium-sensitive opener of maxi-K potassium channels. Nat Med 7:471–477

    Article  CAS  PubMed  Google Scholar 

  17. Chan PH (2001) Reactive oxygen radicals in signaling and damage in the ischemic brain. J Cereb Blood Flow Metab 21:2–14

    CAS  PubMed  Google Scholar 

  18. Kroemer G, Reed JC (2000) Mitochondrial control of cell death. Nat Med 6:513–519

    Article  CAS  PubMed  Google Scholar 

  19. Bernardi P, Petronilli V, Di Lisa F, Forte M (2001) A mitochondrial perspective on cell death. Trends Biochem Sci 26:112–117

    Article  CAS  PubMed  Google Scholar 

  20. Kondo T, Reaume AG, Huang TT, Carlson E, Murakami K, Chen SF, Hoffman EK, Scott RW, Epstein CJ, Chan PH (1997) Reduction of CuZn-superoxide dismutase activity exacerbates neuronal cell injury and edema formation after transient focal cerebral ischemia. J Neurosci 17:4180–4189

    CAS  PubMed  Google Scholar 

  21. Kinouchi H, Epstein CJ, Mizui T, Carlson E, Chen SF, Chan PH (1991) Attenuation of focal cerebral ischemic injury in transgenic mice overexpressing CuZn superoxide dismutase. Proc Natl Acad Sci USA 88:11158–11162

    CAS  PubMed  Google Scholar 

  22. Sheng H, Bart RD, Oury TD, Pearlstein RD, Crapo JD, Warner DS (1999) Mice overexpressing extracellular superoxide dismutase have increased resistance to focal cerebral ischemia. Neuroscience 88:185–191

    Article  CAS  PubMed  Google Scholar 

  23. Kim GW, Kondo T, Noshita N, Chan PH (2002) Manganese superoxide dismutase deficiency exacerbates cerebral infarction after focal cerebral ischemia/reperfusion in mice: implications for the production and role of superoxide radicals. Stroke 33:809–815

    CAS  PubMed  Google Scholar 

  24. Huang Z, Huang PL, Panahian N, Dalkara T, Fishman MC, Moskowitz MA (1994) Effects of cerebral ischemia in mice deficient in neuronal nitric oxide synthase. Science 265:1883–1885

    CAS  PubMed  Google Scholar 

  25. Iadecola C, Zhang F, Casey R, Nagayama M, Ross ME (1997) Delayed reduction of ischemic brain injury and neurological deficits in mice lacking the inducible nitric oxide synthase gene. J Neurosci 17:9157–9164

    CAS  PubMed  Google Scholar 

  26. Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA (1990) Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci USA 87:1620–1624

    CAS  PubMed  Google Scholar 

  27. Zhang J, Dawson VL, Dawson TM, Snyder SH (1994) Nitric oxide activation of poly(ADP-ribose) synthetase in neurotoxicity. Science 263:687–689

    CAS  PubMed  Google Scholar 

  28. Eliasson MJ, Sampei K, Mandir AS, Hurn PD, Traystman RJ, Bao J, Pieper A, Wang ZQ, Dawson TM, Snyder SH, Dawson VL (1997) Poly(ADP-ribose) polymerase gene disruption renders mice resistant to cerebral ischemia. Nat Med 3:1089–1095

    Article  CAS  PubMed  Google Scholar 

  29. Endres M, Wang ZQ, Namura S, Waeber C, Moskowitz MA (1997) Ischemic brain injury is mediated by the activation of poly(ADP-ribose) polymerase. J Cereb Blood Flow Metab 17:1143–1151

    CAS  PubMed  Google Scholar 

  30. Yuan J, Yankner BA (2000) Apoptosis in the nervous system. Nature 407:802–809

    Article  CAS  PubMed  Google Scholar 

  31. Nicotera P, Leist M, Fava E, Berliocchi L, Volbracht C (2000) Energy requirement for caspase activation and neuronal cell death. Brain Pathol 10:276–282

    CAS  PubMed  Google Scholar 

  32. Chopp M, Chan PH, Hsu CY, Cheung ME, Jacobs TP (1996) DNA damage and repair in central nervous system injury: national institute of neurological disorders and stroke workshop summary. Stroke 27:363–369

    CAS  PubMed  Google Scholar 

  33. Nicotera P, Lipton SA (1999) Excitotoxins in neuronal apoptosis and necrosis. J Cereb Blood Flow Metab 19:583–591

    CAS  PubMed  Google Scholar 

  34. Budd SL, Tenneti L, Lishnak T, Lipton SA (2000) Mitochondrial and extramitochondrial apoptotic signaling pathways in cerebrocortical neurons. Proc Natl Acad Sci USA 97:6161–6166

    Article  CAS  PubMed  Google Scholar 

  35. Martin-Villalba A, Herr I, Jeremias I, Hahne M, Brandt R, Vogel J, Schenkel J, Herdegen T, Debatin KM (1999) CD95 ligand (fas-l/apo-1 l) and tumor necrosis factor-related apoptosis-inducing ligand mediate ischemia-induced apoptosis in neurons. J Neurosci 19:3809–3817

    CAS  PubMed  Google Scholar 

  36. Salvesen GS (2001) A lysosomal protease enters the death scene. J Clin Invest 107:21–22

    CAS  PubMed  Google Scholar 

  37. Digicaylioglu M, Lipton SA (2001) Erythropoietin-mediated neuroprotection involves cross-talk between Jak2 and NF-kappaB signalling cascades. Nature 412:641–647

    Article  CAS  PubMed  Google Scholar 

  38. Mannick JB, Hausladen A, Liu L, Hess DT, Zeng M, Miao QX, Kane LS, Gow AJ, Stamler JS (1999) Fas-induced caspase denitrosylation. Science 284:651–654

    Article  CAS  PubMed  Google Scholar 

  39. Yamashima T (2000) Implication of cysteine proteases calpain, cathepsin and caspase in ischemic neuronal death of primates. Prog Neurobiol 62:273–295

    Article  CAS  PubMed  Google Scholar 

  40. Mohr S, Stamler JS, Brune B (1994) Mechanism of covalent modification of glyceraldehyde-3-phosphate dehydrogenase at its active site thiol by nitric oxide, peroxynitrite and related nitrosating agents. FEBS Lett 348:223–227

    Article  CAS  PubMed  Google Scholar 

  41. Elibol B, Soylemezoglu F, Unal I, Fujii M, Hirt L, Huang PL, Moskowitz MA, Dalkara T (2001) Nitric oxide is involved in ischemia-induced apoptosis in brain: a study in neuronal nitric oxide synthase null mice. Neuroscience 105:79–86

    Article  CAS  PubMed  Google Scholar 

  42. Yu SW, Wang H, Poitras MF, Coombs C, Bowers WJ, Federoff HJ, Poirier GG, Dawson TM, Dawson VL (2002) Mediation of poly(ADP-ribose) polymerase-1-dependent cell death by apoptosis-inducing factor. Science 297:259–263

    Article  CAS  PubMed  Google Scholar 

  43. Yu SP, Choi DW (2000) Ions, cell volume, and apoptosis. Proc Natl Acad Sci USA 97:9360–9362

    CAS  PubMed  Google Scholar 

  44. Yu SP, Yeh C, Strasser U, Tian M, Choi DW (1999) NMDA receptor-mediated K+ efflux and neuronal apoptosis. Science 284:336–339

    Article  CAS  PubMed  Google Scholar 

  45. Qiu J, Whalen MJ, Lowenstein P, Fiskum G, Fahy B, Darwish R, Aarabi B, Yuan J, Moskowitz MA (2002) Upregulation of the fas receptor death-inducing signaling complex after traumatic brain injury in mice and humans. J Neurosci 22:3504–3511

    CAS  PubMed  Google Scholar 

  46. Namura S, Zhu J, Fink K, Endres M, Srinivasan A, Tomaselli KJ, Yuan J, Moskowitz MA (1998) Activation and cleavage of caspase-3 in apoptosis induced by experimental cerebral ischemia. J Neurosci 18:3659–3668

    CAS  PubMed  Google Scholar 

  47. Fiskum G (2000) Mitochondrial participation in ischemic and traumatic neural cell death. J Neurotrauma 17:843–855

    CAS  PubMed  Google Scholar 

  48. Leist M, Jaattela M (2001) Four deaths and a funeral: from caspases to alternative mechanisms. Nat Rev Mol Cell Biol 2:589–598

    Article  CAS  PubMed  Google Scholar 

  49. Friedlander RM (2003) Apoptosis and caspases in neurodegenerative diseases. N Engl J Med 348:1365–1375

    CAS  PubMed  Google Scholar 

  50. Graham SH, Chen J (2001) Programmed cell death in cerebral ischemia. J Cereb Blood Flow Metab 21:99–109

    CAS  PubMed  Google Scholar 

  51. Han BH, Xu D, Choi J, Han Y, Xanthoudakis S, Roy S, Tam J, Vaillancourt J, Colucci J, Siman R, Giroux A, Robertson GS, Zamboni R, Nicholson DW, Holtzman DM (2002) Selective, reversible caspase-3 inhibitor is neuroprotective and reveals distinct pathways of cell death after neonatal hypoxic-ischemic brain injury. J Biol Chem 277:30128–30136

    CAS  PubMed  Google Scholar 

  52. Le DA, Wu Y, Huang Z, Matsushita K, Plesnila N, Augustinack JC, Hyman BT, Yuan J, Kuida K, Flavell RA, Moskowitz MA (2002) Caspase activation and neuroprotection in caspase-3-deficient mice after in vivo cerebral ischemia and in vitro oxygen glucose deprivation. Proc Natl Acad Sci USA 99:15188–15193

    Article  CAS  PubMed  Google Scholar 

  53. Chamorro A (2004) Role of inflammation in stroke and atherothrombosis. Cerebrovasc Dis 17(Suppl 3):1–5

    CAS  Google Scholar 

  54. Elkind MS, Cheng J, Boden-Albala B, Rundek T, Thomas J, Chen H, Rabbani LE, Sacco RL (2002) Tumor necrosis factor receptor levels are associated with carotid atherosclerosis. Stroke 33:31–37

    CAS  PubMed  Google Scholar 

  55. Ridker PM, Hennekens CH, Buring JE, Rifai N (2000) C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women. N Engl J Med 342:836–843

    Article  CAS  PubMed  Google Scholar 

  56. Tanne D, Haim M, Boyko V, Goldbourt U, Reshef T, Matetzky S, Adler Y, Mekori YA, Behar S (2002) Soluble intercellular adhesion molecule-1 and risk of future ischemic stroke: a nested case-control study from the bezafibrate infarction prevention (BIP) study cohort. Stroke 33:2182–2186

    CAS  PubMed  Google Scholar 

  57. Connolly ES Jr., Winfree CJ, Springer TA, Naka Y, Liao H, Yan SD, Stern DM, Solomon RA, Gutierrez-Ramos JC, Pinsky DJ (1996) Cerebral protection in homozygous null ICAM-1 mice after middle cerebral artery occlusion. Role of neutrophil adhesion in the pathogenesis of stroke. J Clin Invest 97:209–216

    CAS  PubMed  Google Scholar 

  58. Connolly ES Jr., Winfree CJ, Prestigiacomo CJ, Kim SC, Choudhri TF, Hoh BL, Naka Y, Solomon RA, Pinsky DJ (1997) Exacerbation of cerebral injury in mice that express the p-selectin gene: Identification of p-selectin blockade as a new target for the treatment of stroke. Circ Res 81:304–310

    CAS  PubMed  Google Scholar 

  59. del Zoppo G, Ginis I, Hallenbeck JM, Iadecola C, Wang X, Feuerstein GZ (2000) Inflammation and stroke: putative role for cytokines, adhesion molecules and iNOS in brain response to ischemia. Brain Pathol 10:95–112

    PubMed  Google Scholar 

  60. Huang J, Kim LJ, Mealey R, Marsh HC Jr., Zhang Y, Tenner AJ, Connolly ES Jr., Pinsky DJ (1999) Neuronal protection in stroke by an sLex-glycosylated complement inhibitory protein. Science 285:595–599

    Article  CAS  PubMed  Google Scholar 

  61. Enlimomab Acute Stroke Trial Investigators (2001) Use of anti-ICAM-1 therapy in ischemic stroke: results of the enlimomab acute stroke trial. Neurology 57:1428–1434

    Google Scholar 

  62. Hughes PM, Allegrini PR, Rudin M, Perry VH, Mir AK, Wiessner C (2002) Monocyte chemoattractant protein-1 deficiency is protective in a murine stroke model. J Cereb Blood Flow Metab 22:308–317

    CAS  PubMed  Google Scholar 

  63. Iadecola C, Niwa K, Nogawa S, Zhao X, Nagayama M, Araki E, Morham S, Ross ME (2001) Reduced susceptibility to ischemic brain injury and N-methyl-D-aspartate-mediated neurotoxicity in cyclooxygenase-2-deficient mice. Proc Natl Acad Sci USA 98:1294–1299

    Article  CAS  PubMed  Google Scholar 

  64. Boutin H, LeFeuvre RA, Horai R, Asano M, Iwakura Y, Rothwell NJ (2001) Role of IL-1alpha and IL-1beta in ischemic brain damage. J Neurosci 21:5528–5534

    CAS  PubMed  Google Scholar 

  65. Schielke GP, Yang GY, Shivers BD, Betz AL (1998) Reduced ischemic brain injury in interleukin-1 beta converting enzyme-deficient mice. J Cereb Blood Flow Metab 18:180–185

    CAS  PubMed  Google Scholar 

  66. Nawashiro H, Tasaki K, Ruetzler CA, Hallenbeck JM (1997) TNF-alpha pretreatment induces protective effects against focal cerebral ischemia in mice. J Cereb Blood Flow Metab 17:483–490

    CAS  PubMed  Google Scholar 

  67. Bruce AJ, Boling W, Kindy MS, Peschon J, Kraemer PJ, Carpenter MK, Holtsberg FW, Mattson MP (1996) Altered neuronal and microglial responses to excitotoxic and ischemic brain injury in mice lacking TNF receptors. Nat Med 2:788–794

    Article  CAS  PubMed  Google Scholar 

  68. Fontaine V, Mohand-Said S, Hanoteau N, Fuchs C, Pfizenmaier K, Eisel U (2002) Neurodegenerative and neuroprotective effects of tumor necrosis factor (TNF) in retinal ischemia: opposite roles of TNF receptor 1 and TNF receptor 2. J Neurosci 22:RC216

    PubMed  Google Scholar 

  69. Zhang ZG, Zhang L, Jiang Q, Zhang R, Davies K, Powers C, Bruggen N, Chopp M (2000) VEGF enhances angiogenesis and promotes blood-brain barrier leakage in the ischemic brain. J Clin Invest 106:829–838

    CAS  PubMed  Google Scholar 

  70. Jander S, Schroeter M, Peters O, Witte OW, Stoll G (2001) Cortical spreading depression induces proinflammatory cytokine gene expression in the rat brain. J Cereb Blood Flow Metab 21:218–225

    CAS  PubMed  Google Scholar 

  71. Hansen AJ, Nedergaard M (1988) Brain ion homeostasis in cerebral ischemia. Neurochem Pathol 9:195–209

    CAS  PubMed  Google Scholar 

  72. Strong AJ, Smith SE, Whittington DJ, Meldrum BS, Parsons AA, Krupinski J, Hunter AJ, Patel S, Robertson C (2000) Factors influencing the frequency of fluorescence transients as markers of peri-infarct depolarizations in focal cerebral ischemia. Stroke 31:214–222

    CAS  PubMed  Google Scholar 

  73. Gill R, Andine P, Hillered L, Persson L, Hagberg H (1992) The effect of MK-801 on cortical spreading depression in the penumbral zone following focal ischaemia in the rat. J Cereb Blood Flow Metab 12:371–379

    CAS  PubMed  Google Scholar 

  74. Iijima T, Mies G, Hossmann KA (1992) Repeated negative DC deflections in rat cortex following middle cerebral artery occlusion are abolished by MK-801: effect on volume of ischemic injury. J Cereb Blood Flow Metab 12:727–733

    CAS  PubMed  Google Scholar 

  75. Busch E, Gyngell ML, Eis M, Hoehn-Berlage M, Hossmann KA (1996) Potassium-induced cortical spreading depressions during focal cerebral ischemia in rats: Contribution to lesion growth assessed by diffusion-weighted NMR and biochemical imaging. J Cereb Blood Flow Metab 16:1090–1099

    CAS  PubMed  Google Scholar 

  76. Dijkhuizen RM, Beekwilder JP, van der Worp HB, Berkelbach van der Sprenkel JW, Tulleken KA, Nicolay K (1999) Correlation between tissue depolarizations and damage in focal ischemic rat brain. Brain Res 840:194–205

    Article  CAS  PubMed  Google Scholar 

  77. Hartings JA, Rolli ML, Lu XC, Tortella FC (2003) Delayed secondary phase of peri-infarct depolarizations after focal cerebral ischemia: relation to infarct growth and neuroprotection. J Neurosci 23:11602–11610

    CAS  PubMed  Google Scholar 

  78. Tatlisumak T, Takano K, Meiler MR, Fisher M (1998) A glycine site antagonist, ZD9379, reduces number of spreading depressions and infarct size in rats with permanent middle cerebral artery occlusion. Stroke 29:190–195

    CAS  PubMed  Google Scholar 

  79. Chen Q, Chopp M, Bodzin G, Chen H (1993) Temperature modulation of cerebral depolarization during focal cerebral ischemia in rats: correlation with ischemic injury. J Cereb Blood Flow Metab 13:389–394

    CAS  PubMed  Google Scholar 

  80. Petty MA, Wettstein JG (1999) White matter ischaemia. Brain Res Brain Res Rev 31:58–64

    Article  CAS  PubMed  Google Scholar 

  81. Stys PK (1998) Anoxic and ischemic injury of myelinated axons in CNS white matter: From mechanistic concepts to therapeutics. J Cereb Blood Flow Metab 18:2–25

    CAS  PubMed  Google Scholar 

  82. Li S, Mealing GA, Morley P, Stys PK (1999) Novel injury mechanism in anoxia and trauma of spinal cord white matter: glutamate release via reverse Na+-dependent glutamate transport. J Neurosci 19:RC16

    CAS  PubMed  Google Scholar 

  83. McDonald JW, Althomsons SP, Hyrc KL, Choi DW, Goldberg MP. (1998) Oligodendrocytes from forebrain are highly vulnerable to AMPA/kainate receptor-mediated excitotoxicity. Nat Med 4:291–297

    Article  CAS  PubMed  Google Scholar 

  84. Gu C, Casaccia-Bonnefil P, Srinivasan A, Chao MV (1999) Oligodendrocyte apoptosis mediated by caspase activation. J Neurosci 19:3043–3049

    CAS  PubMed  Google Scholar 

  85. Chandler S, Coates R, Gearing A, Lury J, Wells G, Bone E (1995) Matrix metalloproteinases degrade myelin basic protein. Neurosci Lett 201:223–226

    Article  CAS  PubMed  Google Scholar 

  86. Rosenberg GA, Sullivan N, Esiri MM (2001) White matter damage is associated with matrix metalloproteinases in vascular dementia. Stroke 32:1162–1168

    CAS  PubMed  Google Scholar 

  87. Stroke Progress Review Group (SPRG) (2002) Report of the Stroke Progress Review Group (SPRG) to the Director and the National Advisory Neurological Disorders and Stroke Council of the National Institute of Neurological Disorders and Stroke (NINDS), pp 1–116

    Google Scholar 

  88. Petty MA, Lo EH (2002) Junctional complexes of the blood-brain barrier: permeability changes in neuroinflammation. Prog Neurobiol 68:311–323

    Article  CAS  PubMed  Google Scholar 

  89. Yong VW, Krekoski CA, Forsyth PA, Bell R, Edwards DR (1998) Matrix metalloproteinases and diseases of the CNS. Trends Neurosci 21:75–80

    CAS  PubMed  Google Scholar 

  90. Cuzner ML, Opdenakker G (1999) Plasminogen activators and matrix metalloproteases, mediators of extracellular proteolysis in inflammatory demyelination of the central nervous system. J Neuroimmunol 94:1–14

    Article  CAS  PubMed  Google Scholar 

  91. Yong VW, Power C, Forsyth P, Edwards DR (2001) Metalloproteinases in biology and pathology of the nervous system. Nat Rev Neurosci 2:502–511

    Article  CAS  PubMed  Google Scholar 

  92. Wang X, Mori T, Jung JC, Fini ME, Lo EH (2002) Secretion of matrix metalloproteinase-2 and-9 after mechanical trauma injury in rat cortical cultures and involvement of map kinase. J Neurotrauma 19:615–625

    PubMed  Google Scholar 

  93. Gasche Y, Copin JC, Sugawara T, Fujimura M, Chan PH (2001) Matrix metalloproteinase inhibition prevents oxidative stress-associated blood-brain barrier disruption after transient focal cerebral ischemia. J Cereb Blood Flow Metab 21:1393–1400

    CAS  PubMed  Google Scholar 

  94. Gu Z, Kaul M, Yan B, Kridel SJ, Cui J, Strongin A, Smith JW, Liddington RC, Lipton SA (2002) S-Nitrosylation of matrix metalloproteinases: signaling pathway to neuronal cell death. Science 297:1186–1190

    Article  CAS  PubMed  Google Scholar 

  95. Lee SR, Lo EH (2004) Induction of caspase-mediated cell death by matrix metalloproteinases in cerebral endothelial cells after hypoxia-reoxygenation. J Cereb Blood Flow Metab 24:720–727

    CAS  PubMed  Google Scholar 

  96. Justicia C, Panes J, Sole S, Cervera A, Deulofeu R, Chamorro A, Planas AM (2003) Neutrophil infiltration increases matrix metalloproteinase-9 in the ischemic brain after occlusion/reperfusion of the middle cerebral artery in rats. J Cereb Blood Flow Metab 23:1430–1440

    CAS  PubMed  Google Scholar 

  97. Campbell SJ, Finlay M, Clements JM, Wells G, Miller KM, Perry VH, Anthony DC (2004) Reduction of excitotoxicity and associated leukocyte recruitment by a broad-spectrum matrix metalloproteinase inhibitor. J Neurochem 89:1378–1386

    Article  CAS  PubMed  Google Scholar 

  98. Clark AW, Krekoski CA, Bou SS, Chapman KR, Edwards DR (1997) Increased gelatinase A (MMP-2) and gelatinase B (MMP-9) activities in human brain after focal ischemia. Neurosci Lett 238:53–56

    Article  CAS  PubMed  Google Scholar 

  99. Gasche Y, Fujimura M, Morita-Fujimura Y, Copin JC, Kawase M, Massengale J, Chan PH (1999) Early appearance of activated matrix metalloproteinase-9 after focal cerebral ischemia in mice: a possible role in blood-brain barrier dysfunction. J Cereb Blood Flow Metab 19:1020–1028

    CAS  PubMed  Google Scholar 

  100. Heo JH, Lucero J, Abumiya T, Koziol JA, Copeland BR, del Zoppo GJ (1999) Matrix metalloproteinases increase very early during experimental focal cerebral ischemia. J Cereb Blood Flow Metab 19:624–633

    CAS  PubMed  Google Scholar 

  101. Asahi M, Asahi K, Jung JC, del Zoppo GJ, Fini ME, Lo EH (2000) Role for matrix metalloproteinase 9 after focal cerebral ischemia: effects of gene knockout and enzyme inhibition with BB-94. J Cereb Blood Flow Metab 20:1681–1689

    CAS  PubMed  Google Scholar 

  102. Montaner J, Alvarez-Sabin J, Molina C, Angles A, Abilleira S, Arenillas J, Gonzalez MA, Monasterio J (2001) Matrix metalloproteinase expression after human cardioembolic stroke: temporal profile and relation to neurological impairment. Stroke 32:1759–1766

    CAS  PubMed  Google Scholar 

  103. Sumii T, Lo EH (2002) Involvement of matrix metalloproteinase in thrombolysis-associated hemorrhagic transformation after embolic focal ischemia in rats. Stroke 33:831–836

    Article  CAS  PubMed  Google Scholar 

  104. Abilleira S, Montaner J, Molina CA, Monasterio J, Castillo J, Alvarez-Sabin J (2003) Matrix metalloproteinase-9 concentration after spontaneous intracerebral hemorrhage. J Neurosurg 99:65–70

    CAS  PubMed  Google Scholar 

  105. Fukuda S, Fini CA, Mabuchi T, Koziol JA, Eggleston LL Jr., del Zoppo GJ (2004) Focal cerebral ischemia induces active proteases that degrade microvascular matrix. Stroke 35:998–1004

    Article  CAS  PubMed  Google Scholar 

  106. Lo EH, Wang X, Cuzner ML (2002) Extracellular proteolysis in brain injury and inflammation: role for plasminogen activators and matrix metalloproteinases. J Neurosci Res 69:1–9

    Article  CAS  PubMed  Google Scholar 

  107. Montaner J, Rovira A, Molina CA, Arenillas JF, Ribo M, Chacon P, Monasterio J, Alvarez-Sabin J (2003) Plasmatic level of neuroinflammatory markers predict the extent of diffusion-weighted image lesions in hyperacute stroke. J Cereb Blood Flow Metab 23:1403–1407

    CAS  PubMed  Google Scholar 

  108. Nagai N, Yamamoto S, Tsuboi T, Ihara H, Urano T, Takada Y, Terakawa S, Takada A. (2001) Tissue-type plasminogen activator is involved in the process of neuronal death induced by oxygen-glucose deprivation in culture. J Cereb Blood Flow Metab 21:631–634

    CAS  PubMed  Google Scholar 

  109. Nicole O, Docagne F, Ali C, Margaill I, Carmeliet P, MacKenzie ET, Vivien D, Buisson A (2001) The proteolytic activity of tissue-plasminogen activator enhances NMDA receptor-mediated signaling. Nat Med 7:59–64

    CAS  PubMed  Google Scholar 

  110. Yepes M, Sandkvist M, Wong MK, Coleman TA, Smith E, Cohan SL, Lawrence DA (2000) Neuroserpin reduces cerebral infarct volume and protects neurons from ischemia-induced apoptosis. Blood 96:569–576

    CAS  PubMed  Google Scholar 

  111. Wang YF, Tsirka SE, Strickland S, Stieg PE, Soriano SG, Lipton SA (1998) Tissue plasminogen activator (tPA) increases neuronal damage after focal cerebral ischemia in wild-type and tPA-deficient mice. Nat Med 4:228–231

    CAS  PubMed  Google Scholar 

  112. Tabrizi P, Wang L, Seeds N, McComb JG, Yamada S, Griffin JH, Carmeliet P, Weiss MH, Zlokovic BV (1999) Tissue plasminogen activator (tPA) deficiency exacerbates cerebrovascular fibrin deposition and brain injury in a murine stroke model: Studies in tPA-deficient mice and wild-type mice on a matched genetic background. Arterioscler Thromb Vasc Biol 19:2801–2806

    CAS  PubMed  Google Scholar 

  113. Ginsberg MD (1999) On ischemic brain injury in genetically altered mice. Arterioscler Thromb Vasc Biol 19:2581–2583

    CAS  PubMed  Google Scholar 

  114. Wang X, Lee SR, Arai K, Tsuji K, Rebeck GW, Lo EH (2003) Lipoprotein receptor-mediated induction of matrix metalloproteinase by tissue plasminogen activator. Nat Med 9:1313–1317

    Article  CAS  PubMed  Google Scholar 

  115. Anonymous (1995) Tissue plasminogen activator for acute ischemic stroke. The national institute of neurological disorders and stroke rt-PA stroke study group. N Engl J Med 333:1581–1587

    Google Scholar 

  116. The RANTTAS Investigators (1996) A randomized trial of tirilazad mesylate in patients with acute stroke (RANTTAS). Stroke 27:1453–1458

    Google Scholar 

  117. (1992) Clinical trial of nimodipine in acute ischemic stroke. The American Nimodipine Study Group. Stroke 23:3–8

    Google Scholar 

  118. Wahlgren NG, Ranasinha KW, Rosolacci T, Franke CL, van Erven PM, Ashwood T, Claesson L (1999) Clomethiazole acute stroke study (CLASS): results of a randomized, controlled trial of clomethiazole versus placebo in 1360 acute stroke patients. Stroke 30:21–28

    CAS  PubMed  Google Scholar 

  119. Lyden P, Shuaib A, Ng K, Levin K, Atkinson RP, Rajput A, Wechsler L, Ashwood T, Claesson L, Odergren T, Salazar-Grueso E (2002) Clomethiazole acute stroke study in ischemic stroke (class-I):final results. Stroke 33:122–128

    Article  CAS  PubMed  Google Scholar 

  120. Diener HC, Cortens M, Ford G, Grotta J, Hacke W, Kaste M, Koudstaal PJ, Wessel T (2000) Lubeluzole in acute ischemic stroke treatment: a double-blind study with an 8-hour inclusion window comparing a 10-mg daily dose of lubeluzole with placebo. Stroke 31:2543–2551

    CAS  PubMed  Google Scholar 

  121. Davis SM, Lees KR, Albers GW, Diener HC, Markabi S, Karlsson G, Norris J (2000) Selfotel in acute ischemic stroke: possible neurotoxic effects of an NMDA antagonist. Stroke 31:347–354

    CAS  PubMed  Google Scholar 

  122. Albers GW, Goldstein LB, Hall D, Lesko LM (2001) Aptiganel hydrochloride in acute ischemic stroke: a randomized controlled trial. J Am Med Assoc 286:2673–2682

    Article  CAS  Google Scholar 

  123. Lees KR, Asplund K, Carolei A, Davis SM, Diener HC, Kaste M, Orgogozo JM, Whitehead J (2000) Glycine antagonist (gavestinel) in neuroprotection (gain international) in patients with acute stroke: a randomised controlled trial. Gain international investigators. Lancet 355:1949–1954

    Article  CAS  PubMed  Google Scholar 

  124. Sacco RL, DeRosa JT, Haley EC Jr., Levin B, Ordronneau P, Phillips SJ, Rundek T, Snipes RG, Thompson JL (2001) Glycine antagonist in neuroprotection for patients with acute stroke: GAIN Americas: a randomized controlled trial. J Am Med Assoc 285:1719–1728

    CAS  Google Scholar 

  125. Del Zoppo GJ (1995) Why do all drugs work in animals but none in stroke patients? 1. Drugs promoting cerebral blood flow. J Intern Med 237:79–88

    PubMed  Google Scholar 

  126. Grotta J (1995) Why do all drugs work in animals but none in stroke patients? 2. Neuroprotective therapy. J Intern Med 237:89–94

    CAS  PubMed  Google Scholar 

  127. Kidwell CS, Liebeskind DS, Starkman S, Saver JL (2001) Trends in acute ischemic stroke trials through the 20th century. Stroke 32:1349–1359

    CAS  PubMed  Google Scholar 

  128. Lo EH, Singhal AB, Torchilin VP, Abbott NJ (2001) Drug delivery to damaged brain. Brain Res Brain Res Rev 38:140–148

    Article  CAS  PubMed  Google Scholar 

  129. Sorensen AG, Copen WA, Ostergaard L, Buonanno FS, Gonzalez RG, Rordorf G, Rosen BR, Schwamm LH, Weisskoff RM, Koroshetz WJ (1999) Hyperacute stroke: simultaneous measurement of relative cerebral blood volume, relative cerebral blood flow, and mean tissue transit time. Radiology 210:519–527

    CAS  PubMed  Google Scholar 

  130. Fisher M (2003) Recommendations for advancing development of acute stroke therapies: stroke therapy academic industry roundtable 3. Stroke 34:1539–1546

    CAS  PubMed  Google Scholar 

  131. Muir KW, Lees KR, Ford I, Davis S (2004) Magnesium for acute stroke (intravenous magnesium efficacy in stroke trial): randomised controlled trial. Lancet 363:439–445

    CAS  PubMed  Google Scholar 

  132. Yamaguchi T, Sano K, Takakura K, Saito I, Shinohara Y, Asano T, Yasuhara H (1998) Ebselen in acute ischemic stroke: a placebo-controlled, double-blind clinical trial. Ebselen Study Group. Stroke 29:12–17

    CAS  PubMed  Google Scholar 

  133. Lees KR, Barer D, Ford GA, Hacke W, Kostulas V, Sharma AK, Odergren T (2003) Tolerability of NXY-059 at higher target concentrations in patients with acute stroke. Stroke 34:482–487

    CAS  PubMed  Google Scholar 

  134. Hossmann KA (1994) Viability thresholds and the penumbra of focal ischemia. Ann Neurol 36:557–565

    Article  CAS  PubMed  Google Scholar 

  135. Baron JC (2001) Perfusion thresholds in human cerebral ischemia: historical perspective and therapeutic implications. Cerebrovasc Dis 11(Suppl.1):2–8

    PubMed  Google Scholar 

  136. Ginsberg MD, Pulsinelli WA (1994) The ischemic penumbra, injury thresholds, and the therapeutic window for acute stroke. Ann Neurol 36:553–554

    Article  CAS  PubMed  Google Scholar 

  137. Markus R, Reutens DC, Kazui S, Read S, Wright P, Pearce DC, Tochon-Danguy HJ, Sachinidis JI, Donnan GA (2004) Hypoxic tissue in ischaemic stroke: persistence and clinical consequences of spontaneous survival. Brain 127: 1427–1436

    Article  CAS  PubMed  Google Scholar 

  138. Reed SD, Cramer SC, Blough DK, Meyer K, Jarvik JG (2001) Treatment with tissue plasminogen activator and inpatient mortality rates for patients with ischemic stroke treated in community hospitals. Stroke 32:1832–1840

    CAS  PubMed  Google Scholar 

  139. Baron JC (2001) Mapping the ischaemic penumbra with PET: a new approach. Brain 124:2–4

    Article  CAS  PubMed  Google Scholar 

  140. Heiss WD, Kracht LW, Thiel A, Grond M, Pawlik G (2001) Penumbral probability thresholds of cortical flumazenil binding and blood flow predicting tissue outcome in patients with cerebral ischaemia. Brain 124:20–29

    Article  CAS  PubMed  Google Scholar 

  141. Baird AE, Warach S (1998) Magnetic resonance imaging of acute stroke. J Cereb Blood Flow Metab 18:583–609

    CAS  PubMed  Google Scholar 

  142. Kidwell CS, Alger JR, Saver JL (2003) Beyond mismatch: evolving paradigms in imaging the ischemic penumbra with multimodal magnetic resonance imaging. Stroke 34:2729–2735

    PubMed  Google Scholar 

  143. Schlaug G, Benfield A, Baird AE, Siewert B, Lovblad KO, Parker RA, Edelman RR, Warach S (1999) The ischemic penumbra: operationally defined by diffusion and perfusion MRI. Neurology 53:1528–1537

    CAS  PubMed  Google Scholar 

  144. Schaefer PW, Ozsunar Y, He J, Hamberg LM, Hunter GJ, Sorensen AG, Koroshetz WJ, Gonzalez RG (2003) Assessing tissue viability with MR diffusion and perfusion imaging. Am J Neuroradiol 24:436–443

    PubMed  Google Scholar 

  145. Lev MH, Segal AZ, Farkas J, Hossain ST, Putman C, Hunter GJ, Budzik R, Harris GJ, Buonanno FS, Ezzeddine MA, Chang Y, Koroshetz WJ, Gonzalez RG, Schwamm LH (2001) Utility of perfusion-weighted CT imaging in acute middle cerebral artery stroke treated with intra-arterial thrombolysis: prediction of final infarct volume and clinical outcome. Stroke 32:2021–2028

    CAS  PubMed  Google Scholar 

  146. Wintermark M, Reichhart M, Thiran JP, Maeder P, Chalaron M, Schnyder P, Bogousslavsky J, Meuli R (2002) Prognostic accuracy of cerebral blood flow measurement by perfusion computed tomography, at the time of emergency room admission, in acute stroke patients. Ann Neurol 51:417–432

    Article  PubMed  Google Scholar 

  147. Wintermark M, Reichhart M, Cuisenaire O, Maeder P, Thiran JP, Schnyder P, Bogousslavsky J, Meuli R (2002) Comparison of admission perfusion computed tomography and qualitative diffusion-and perfusion-weighted magnetic resonance imaging in acute stroke patients. Stroke 33:2025–2031

    Article  CAS  PubMed  Google Scholar 

  148. Hunter GJ, Hamberg LM, Ponzo JA, Huang-Hellinger FR, Morris PP, Rabinov J, Farkas J, Lev MH, Schaefer PW, Ogilvy CS, Schwamm L, Buonanno FS, Koroshetz WJ, Wolf GL, Gonzalez RG (1998) Assessment of cerebral perfusion and arterial anatomy in hyperacute stroke with three-dimensional functional CT: early clinical results. Am J Neuroradiol 19:29–37

    CAS  PubMed  Google Scholar 

  149. Jovin TG, Yonas H, Gebel JM, Kanal E, Chang YF, Grahovac SZ, Goldstein S, Wechsler LR (2003) The cortical ischemic core and not the consistently present penumbra is a determinant of clinical outcome in acute middle cerebral artery occlusion. Stroke 34:2426–2433

    Article  PubMed  Google Scholar 

  150. Hacke W, Albers G, Al-Rawi Y, Bogousslavsky J, Davalos A, Eliasziw M, Fischer M, Furlan A, Kaste M, Lees KR, Soehngen M, Warach S (2005) The desmoteplase in acute ischemic stroke trial (DIAS). A phase II MRI-based 9-hour window acute stroke thrombolysis trial with intravenous desmoteplase. Stroke (in press)

    Google Scholar 

  151. Nogawa S, Fosrster C, Zhang F, Nagayama M, Ross ME, Iadecola C. (1998) Interaction between inducible nitric oxide synthase and cyclooxygenase-2 after cerebral ischemia. Proc Natl Acad Sci USA 95:10966–10971

    Article  CAS  PubMed  Google Scholar 

  152. Lyden PD, Jackson-Friedman C, Shin C, Hassid S (2000) Synergistic combinatorial stroke therapy: a quantal bioassay of a GABA agonist and a glutamate antagonist. Exp Neurol 163:477–489

    Article  CAS  PubMed  Google Scholar 

  153. Barth A, Barth L, Newell DW (1996) Combination therapy with MK-801 and alpha-phenyl-tert-butyl-nitrone enhances protection against ischemic neuronal damage in organotypic hippocampal slice cultures. Exp Neurol 141:330–336

    Article  CAS  PubMed  Google Scholar 

  154. Onal MZ, Li F, Tatlisumak T, Locke KW, Sandage BW Jr., Fisher M (1997) Synergistic effects of citicoline and MK-801 in temporary experimental focal ischemia in rats. Stroke 28:1060–1065

    CAS  PubMed  Google Scholar 

  155. Du C, Hu R, Csernansky CA, Liu XZ, Hsu CY, Choi DW (1996) Additive neuroprotective effects of dextrorphan and cycloheximide in rats subjected to transient focal cerebral ischemia. Brain Res 718:233–236

    Article  CAS  PubMed  Google Scholar 

  156. Ma J, Endres M, Moskowitz MA (1998) Synergistic effects of caspase inhibitors and MK-801 in brain injury after transient focal cerebral ischaemia in mice. Br J Pharmacol 124:756–762

    Article  CAS  PubMed  Google Scholar 

  157. Barth A, Barth L, Morrison RS, Newell DW (1996) bFGF enhances the protective effects of MK-801 against ischemic neuronal injury in vitro. Neuroreport 7:1461–1464

    CAS  PubMed  Google Scholar 

  158. Schmid-Elsaesser R, Hungerhuber E, Zausinger S, Baethmann A, Reulen HJ (1999) Neuroprotective efficacy of combination therapy with two different antioxidants in rats subjected to transient focal ischemia. Brain Res 816:471–479

    Article  CAS  PubMed  Google Scholar 

  159. Schabitz WR, Li F, Irie K, Sandage BW Jr., Locke KW, Fisher M (1999) Synergistic effects of a combination of low-dose basic fibroblast growth factor and citicoline after temporary experimental focal ischemia. Stroke 30:427–431; discussion 431-422

    CAS  PubMed  Google Scholar 

  160. Ma J, Qiu J, Hirt L, Dalkara T, Moskowitz MA (2001) Synergistic protective effect of caspase inhibitors and bFGF against brain injury induced by transient focal ischaemia. Br J Pharmacol 133:345–350

    Article  CAS  PubMed  Google Scholar 

  161. Hacke W, Brott T, Caplan L, Meier D, Fieschi C, Von Kummer R, Donnan G, Heiss WD, Wahlgren NG, Spranger M, Boysen G, Marler JR (1999) Thrombolysis in acute ischemic stroke: controlled trials and clinical experience. Neurology 53:S3–14

    CAS  PubMed  Google Scholar 

  162. Garcia JH, Liu KF, Ho KL (1995) Neuronal necrosis after middle cerebral artery occlusion in Wistar rats progresses at different time intervals in the caudoputamen and the cortex. Stroke 26:636–642;discussion 643

    CAS  PubMed  Google Scholar 

  163. Hacke W, Donnan G, Fieschi C, Kaste M, von Kummer R, Broderick JP, Brott T, Frankel M, Grotta JC, Haley EC Jr., Kwiatkowski T, Levine SR, Lewandowski C, Lu M, Lyden P, Marler JR, Patel S, Tilley BC, Albers G (2004) Association of outcome with early stroke treatment: pooled analysis of ATLANTIS, ECASS, and NINDS rt-PA stroke trials. Lancet 363:768–774

    PubMed  Google Scholar 

  164. Asahi M, Asahi K, Wang X, Lo EH (2000) Reduction of tissue plasminogen activator-induced hemorrhage and brain injury by free radical spin trapping after embolic focal cerebral ischemia in rats. J Cereb Blood Flow Metab 20:452–457

    CAS  PubMed  Google Scholar 

  165. Meden P, Overgaard K, Sereghy T, Boysen G (1993) Enhancing the efficacy of thrombolysis by AMPA receptor blockade with NBQX in a rat embolic stroke model. J Neurol Sci 119:209–216

    Article  CAS  PubMed  Google Scholar 

  166. Zivin JA, Mazzarella V (1991) Tissue plasminogen activator plus glutamate antagonist improves outcome after embolic stroke. Arch Neurol 48:1235–1238

    CAS  PubMed  Google Scholar 

  167. Andersen M, Overgaard K, Meden P, Boysen G, Choi SC (1999) Effects of citicoline combined with thrombolytic therapy in a rat embolic stroke model. Stroke 30:1464–1471

    CAS  PubMed  Google Scholar 

  168. Yang Y, Li Q, Shuaib A (2000) Enhanced neuroprotection and reduced hemorrhagic incidence in focal cerebral ischemia of rat by low dose combination therapy of urokinase and topiramate. Neuropharmacology 39:881–888

    CAS  PubMed  Google Scholar 

  169. Bowes MP, Rothlein R, Fagan SC, Zivin JA (1995) Monoclonal antibodies preventing leukocyte activation reduce experimental neurologic injury and enhance efficacy of thrombolytic therapy. Neurology 45:815–819

    CAS  PubMed  Google Scholar 

  170. Shuaib A, Yang Y, Nakada MT, Li Q, Yang T (2002) Glycoprotein IIB/IIIA antagonist, murine 7e3 f(ab’) 2, and tissue plasminogen activator in focal ischemia: evaluation of efficacy and risk of hemorrhage with combination therapy. J Cereb Blood Flow Metab 22:215–222

    CAS  PubMed  Google Scholar 

  171. Lyden P, Jacoby M, Schim J, Albers G, Mazzeo P, Ashwood T, Nordlund A, Odergren T (2001) The clomethiazole acute stroke study in tissue-type plasminogen activatortreated stroke (class-T): final results. Neurology 57:1199–1205

    CAS  PubMed  Google Scholar 

  172. Grotta J (2001) Combination therapy stroke trial: recombinant tissue-type plasminogen activator with/without lubeluzole. Cerebrovasc Dis 12:258–263

    Article  CAS  PubMed  Google Scholar 

  173. Kitagawa K, Matsumoto M, Tagaya M, Hata R, Ueda H, Niinobe M, Handa N, Fukunaga R, Kimura K, Mikoshiba K (1990) “Ischemic tolerance” phenomenon found in the brain. Brain Res 528:21–24

    Article  CAS  PubMed  Google Scholar 

  174. Kawahara N, Wang Y, Mukasa A, Furuya K, Shimizu T, Hamakubo T, Aburatani H, Kodama T, Kirino T (2004) Genome-wide gene expression analysis for induced ischemic tolerance and delayed neuronal death following transient global ischemia in rats. J Cereb Blood Flow Metab 24:212–223

    CAS  PubMed  Google Scholar 

  175. Kirino T (2002) Ischemic tolerance. J Cereb Blood Flow Metab 22:1283–1296

    PubMed  Google Scholar 

  176. Wegener S, Gottschalk B, Jovanovic V, Knab R, Fiebach JB, Schellinger PD, Kucinski T, Jungehulsing GJ, Brunecker P, Muller B, Banasik A, Amberger N, Wernecke KD, Siebler M, Rother J, Villringer A, Weih M (2004) Transient ischemic attacks before ischemic stroke: preconditioning the human brain? A multicenter magnetic resonance imaging study. Stroke 35:616–621

    Article  PubMed  Google Scholar 

  177. Weih M, Kallenberg K, Bergk A, Dirnagl U, Harms L, Wernecke KD, Einhaupl KM (1999) Attenuated stroke severity after prodromal TIA: a role for ischemic tolerance in the brain? Stroke 30:1851–1854

    CAS  PubMed  Google Scholar 

  178. Moncayo J, de Freitas GR, Bogousslavsky J, Altieri M, van Melle G (2000) Do transient ischemic attacks have a neuroprotective effect? Neurology 54:2089–2094

    CAS  PubMed  Google Scholar 

  179. Dirnagl U, Simon RP, Hallenbeck JM (2003) Ischemic tolerance and endogenous neuroprotection. Trends Neurosci 26:248–254

    Article  CAS  PubMed  Google Scholar 

  180. Lin JY, Chung SY, Lin MC, Cheng FC (2002) Effects of magnesium sulfate on energy metabolites and glutamate in the cortex during focal cerebral ischemia and reperfusion in the gerbil monitored by a dual-probe microdialysis technique. Life Sci 71:803–811

    CAS  PubMed  Google Scholar 

  181. Nowak L, Bregestovski P, Ascher P, Herbet A, Prochiantz A (1984) Magnesium gates glutamate-activated channels in mouse central neurones. Nature 307:462–465

    Article  CAS  PubMed  Google Scholar 

  182. Chi OZ, Pollak P, Weiss HR (1990) Effects of magnesium sulfate and nifedipine on regional cerebral blood flow during middle cerebral artery ligation in the rat. Arch Int Pharmacodyn Ther 304:196–205

    CAS  PubMed  Google Scholar 

  183. Izumi Y, Roussel S, Pinard E, Seylaz J (1991) Reduction of infarct volume by magnesium after middle cerebral artery occlusion in rats. J Cereb Blood Flow Metab 11:1025–1030

    CAS  PubMed  Google Scholar 

  184. Marinov MB, Harbaugh KS, Hoopes PJ, Pikus HJ, Harbaugh RE (1996) Neuroprotective effects of preischemia intraarterial magnesium sulfate in reversible focal cerebral ischemia. J Neurosurg 85:117–124

    CAS  PubMed  Google Scholar 

  185. Muir KW, Lees KR (1995) A randomized, double-blind, placebo-controlled pilot trial of intravenous magnesium sulfate in acute stroke. Stroke 26:1183–1188

    CAS  PubMed  Google Scholar 

  186. Saver JL, Kidwell C, Eckstein M, Starkman S (2004) Prehospital neuroprotective therapy for acute stroke: results of the field administration of stroke therapy-magnesium (fast-Mag) pilot trial. Stroke 35:E106–E108

    Article  CAS  PubMed  Google Scholar 

  187. Belayev L, Pinard E, Nallet H, Seylaz J, Liu Y, Riyamongkol P, Zhao W, Busto R, Ginsberg MD (2002) Albumin therapy of transient focal cerebral ischemia: in vivo analysis of dynamic microvascular responses. Stroke 33:1077–1084

    Article  PubMed  Google Scholar 

  188. Belayev L, Liu Y, Zhao W, Busto R, Ginsberg MD (2001) Human albumin therapy of acute ischemic stroke: marked neuroprotective efficacy at moderate doses and with a broad therapeutic window. Stroke 32:553–560

    CAS  PubMed  Google Scholar 

  189. Astrup J, Sorensen PM, Sorensen HR (1981) Inhibition of cerebral oxygen and glucose consumption in the dog by hypothermia, pentobarbital, and lidocaine. Anesthesiology 55:263–268

    CAS  PubMed  Google Scholar 

  190. Cardell M, Boris-Moller F, Wieloch T (1991) Hypothermia prevents the ischemia-induced translocation and inhibition of protein kinase C in the rat striatum. J Neurochem 57:1814–1817

    CAS  PubMed  Google Scholar 

  191. Globus MY, Busto R, Lin B, Schnippering H, Ginsberg MD (1995) Detection of free radical activity during transient global ischemia and recirculation: effects of intraischemic brain temperature modulation. J Neurochem 65:1250–1256

    CAS  PubMed  Google Scholar 

  192. Krieger DW, Yenari MA (2004) Therapeu tic hypothermia for acute ischemic stroke: what do laboratory studies teach us? Stroke 35:1482–1489

    Article  PubMed  Google Scholar 

  193. Han HS, Karabiyikoglu M, Kelly S, Sobel RA, Yenari MA (2003) Mild hypothermia inhibits nuclear factor-kappaB translocation in experimental stroke. J Cereb Blood Flow Metab 23:589–598

    CAS  PubMed  Google Scholar 

  194. Wang GJ, Deng HY, Maier CM, Sun GH, Yenari MA (2002) Mild hypothermia reduces ICAM-1 expression, neutrophil infiltration and microglia/monocyte accumulation following experimental stroke. Neuroscience 114:1081–1090

    CAS  PubMed  Google Scholar 

  195. Yenari MA, Iwayama S, Cheng D, Sun GH, Fujimura M, Morita-Fujimura Y, Chan PH, Steinberg GK (2002) Mild hypothermia attenuates cytochrome C release but does not alter bcl-2 expression or caspase activation after experimental stroke. J Cereb Blood Flow Metab 22:29–38

    CAS  PubMed  Google Scholar 

  196. Prosser CL (1973) Temperature. In: Prosser CL (ed) Comparative animal physiology. Saunders, Philadelphia, Pa., pp 362–428

    Google Scholar 

  197. Markarian GZ, Lee JH, Stein DJ, Hong SC (1996) Mild hypothermia: therapeutic window after experimental cerebral ischemia. Neurosurgery 38:542–550;discussion 551

    Article  CAS  PubMed  Google Scholar 

  198. Welsh FA, Harris VA (1991) Postischemic hypothermia fails to reduce ischemic injury in gerbil hippocampus. J Cereb Blood Flow Metab 11:617–620

    CAS  PubMed  Google Scholar 

  199. Ginsberg MD (1997) Hypothermic neuroprotection in cerebral ischemia. In: Welch KMA, Caplan LR, Reis DJ, Siesjo BK, Weir B (eds) Primer on cerebrovascular diseases. Academic Press, San Diego, Calif., pp 272–275

    Google Scholar 

  200. Corbett D, Hamilton M, Colbourne F (2000) Persistent neuroprotection with prolonged postischemic hypothermia in adult rats subjected to transient middle cerebral artery occlusion. Exp Neurol 163:200–206

    Article  CAS  PubMed  Google Scholar 

  201. The Hypothermia after Cardiac Arrest Study Group (2002) Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N Engl J Med 346:549–556

    Article  Google Scholar 

  202. Bernard SA, Gray TW, Buist MD, Jones BM, Silvester W, Gutteridge G, Smith K (2002) Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. N Engl J Med 346:557–563

    Article  PubMed  Google Scholar 

  203. Schwab S, Schwarz S, Spranger M, Keller E, Bertram M, Hacke W (1998) Moderate hypothermia in the treatment of patients with severe middle cerebral artery infarction. Stroke 29:2461–2466

    CAS  PubMed  Google Scholar 

  204. Krieger DW, De Georgia MA, Abou-Chebl A, Andrefsky JC, Sila CA, Katzan IL, Mayberg MR, Furlan AJ (2001) Cooling for acute ischemic brain damage (cool aid): an open pilot study of induced hypothermia in acute ischemic stroke. Stroke 32:1847–1854

    CAS  PubMed  Google Scholar 

  205. Kammersgaard LP, Rasmussen BH, Jorgensen HS, Reith J, Weber U, Olsen TS (2000) Feasibility and safety of inducing modest hypothermia in awake patients with acute stroke through surface cooling: a case-control study: The Copenhagen Stroke Study. Stroke 31:2251–2256

    CAS  PubMed  Google Scholar 

  206. Hayashi S, Nehls DG, Kieck CF, Vielma J, DeGirolami U, Crowell RM (1984) Beneficial effects of induced hypertension on experimental stroke in awake monkeys. Jeurosurg 60:151–157

    CAS  Google Scholar 

  207. Cole DJ, Matsumura JS, Drummond JC, Schell RM (1992) Focal cerebral ischemia in rats: effects of induced hypertension, during reperfusion, on CBF. J Cereb Blood Flow Metab 12:64–69

    CAS  PubMed  Google Scholar 

  208. Fischberg GM, Lozano E, Rajamani K, Ameriso S, Fisher MJ (2000) Stroke precipitated by moderate blood pressure reduction. J Emerg Med 19:339–346

    Article  CAS  PubMed  Google Scholar 

  209. Kassell NF, Peerless SJ, Durward QJ, Beck DW, Drake CG, Adams HP (1982) Treatment of ischemic deficits from vasospasm with intravascular volume expansion and induced arterial hypertension. Neurosurgery 11:337–343

    CAS  PubMed  Google Scholar 

  210. Rordorf G, Cramer SC, Efird JT, Schwamm LH, Buonanno F, Koroshetz WJ (1997) Pharmacological elevation of blood pressure in acute stroke. Clinical effects and safety. Stroke 28:2133–2138

    CAS  PubMed  Google Scholar 

  211. Rordorf G, Koroshetz WJ, Ezzeddine MA, Segal AZ, Buonanno FS (2001) A pilot study of drug-induced hypertension for treatment of acute stroke. Neurology 56:1210–1213

    CAS  PubMed  Google Scholar 

  212. Hillis AE, Ulatowski JA, Barker PB, Torbey M, Ziai W, Beauchamp NJ, Oh S, Wityk RJ (2003) A pilot randomized trial of induced blood pressure elevation: effects on function and focal perfusion in acute and subacute stroke. Cerebrovasc Dis 16:236–246

    Article  CAS  PubMed  Google Scholar 

  213. Hillis AE, Wityk RJ, Beauchamp NJ, Ulatowski JA, Jacobs MA, Barker PB (2004) Perfusion-weighted MRI as a marker of response to treatment in acute and subacute stroke. Neuroradiology 46:31–39

    Article  CAS  PubMed  Google Scholar 

  214. Hillis AE, Barker PB, Beauchamp NJ, Winters BD, Mirski M, Wityk RJ (2001) Restoring blood pressure reperfused Wernicke’s area and improved language. Neurology 56:670–672

    CAS  PubMed  Google Scholar 

  215. Lo EH, Dalkara T, Moskowitz MA (2003) Mechanisms, challenges and opportunities in stroke. Nat Rev Neurosci 4:399–415

    Article  CAS  PubMed  Google Scholar 

  216. Yin W, Badr AE, Mychaskiw G, Zhang JH (2002) Down regulation of cox-2 is involved in hyperbaric oxygen treatment in a rat transient focal cerebral ischemia model. Brain Res 926:165–171

    Article  CAS  PubMed  Google Scholar 

  217. Yin D, Zhou C, Kusaka I, Calvert JW, Parent AD, Nanda A, Zhang JH (2003) Inhibition of apoptosis by hyperbaric oxygen in a rat focal cerebral ischemic model. J Cereb Blood Flow Metab 23:855–864

    CAS  PubMed  Google Scholar 

  218. Wada K, Miyazawa T, Nomura N, Tsuzuki N, Nawashiro H, Shima K (2001) Preferential conditions for and possible mechanisms of induction of ischemic tolerance by repeated hyperbaric oxygenation in gerbil hippocampus. Neurosurgery 49:160–166; discussion 166–167

    CAS  PubMed  Google Scholar 

  219. Menzel M, Doppenberg EM, Zauner A, Soukup J, Reinert MM, Bullock R (1999) Increased inspired oxygen concentration as a factor in improved brain tissue oxygenation and tissue lactate levels after severe human head injury. J Neurosurg 91:1–10

    CAS  PubMed  Google Scholar 

  220. Rockswold SB, Rockswold GL, Vargo JM, Erickson CA, Sutton RL, Bergman TA, Biros MH (2001) Effects of hyperbaric oxygenation therapy on cerebral metabolism and intracranial pressure in severely brain injured patients. J Neurosurg 94:403–411

    CAS  PubMed  Google Scholar 

  221. Zhang JH, Singhal AB, Toole JF (2003) Oxygen therapy in ischemic stroke. Stroke 34:E152–E153, author reply E153–E155

    PubMed  Google Scholar 

  222. Badr AE, Yin W, Mychaskiw G, Zhang JH (2001) Effect of hyperbaric oxygen on striatal metabolites: a microdialysis study in awake freely moving rats after MCA occlusion. Brain Res 916:85–90

    Article  CAS  PubMed  Google Scholar 

  223. Ingvar HD, Lassen NA (1965) Treatment of focal cerebral ischemia with hyperbaric oxygen. Acta Neurol Scand 41:92–95

    CAS  PubMed  Google Scholar 

  224. Badr AE, Yin W, Mychaskiw G, Zhang JH (2001) Dual effect of HBO on cerebral infarction in MCAO rats. Am J Physiol 280:R766–R770

    CAS  Google Scholar 

  225. Burt JT, Kapp JP, Smith RR (1987) Hyperbaric oxygen and cerebral infarction in the gerbil. Surg Neurol 28:265–268

    CAS  PubMed  Google Scholar 

  226. Lou M, Eschenfelder CC, Herdegen T, Brecht S, Deuschl G (2004) Therapeutic window for use of hyperbaric oxygenation in focal transient ischemia in rats. Stroke 35:578–583

    Article  PubMed  Google Scholar 

  227. Veltkamp R, Warner DS, Domoki F, Brinkhous AD, Toole JF, Busija DW (2000) Hyperbaric oxygen decreases infarct size and behavioral deficit after transient focal cerebral ischemia in rats. Brain Res 853:68–73

    Article  CAS  PubMed  Google Scholar 

  228. Sunami K, Takeda Y, Hashimoto M, Hirakawa M (2000) Hyperbaric oxygen reduces infarct volume in rats by increasing oxygen supply to the ischemic periphery. Crit Care Med 28:2831–2836

    CAS  PubMed  Google Scholar 

  229. Schabitz WR, Schade H, Heiland S, Kollmar R, Bardutzky J, Henninger N, Muller H, Carl U, Toyokuni S, Sommer C, Schwab S (2004) Neuroprotection by hyperbaric oxygenation after experimental focal cerebral ischemia monitored by MR-imaging. Stroke

    Google Scholar 

  230. Roos JA, Jackson-Friedman C, Lyden P (1998) Effects of hyperbaric oxygen on neurologic outcome for cerebral ischemia in rats. Acad Emerg Med 5:18–24

    CAS  PubMed  Google Scholar 

  231. Kawamura S, Yasui N, Shirasawa M, Fukasawa H (1990) Therapeutic effects of hyperbaric oxygenation on acute focal cerebral ischemia in rats. Surg Neurol 34:101–106

    CAS  PubMed  Google Scholar 

  232. Weinstein PR, Anderson GG, Telles DA (1987) Results of hyperbaric oxygen therapy during temporary middle cerebral artery occlusion in unanesthetized cats. Neurosurgery 20:518–524

    CAS  PubMed  Google Scholar 

  233. Anderson DC, Bottini AG, Jagiella WM, Westphal B, Ford S, Rockswold GL, Loewenson RB (1991) A pilot study of hyperbaric oxygen in the treatment of human stroke. Stroke 22:1137–1142

    CAS  PubMed  Google Scholar 

  234. Nighoghossian N, Trouillas P, Adeleine P, Salord F (1995) Hyperbaric oxygen in the treatment of acute ischemic stroke. A double-blind pilot study. Stroke 26:1369–1372

    CAS  PubMed  Google Scholar 

  235. Rusyniak DE, Kirk MA, May JD, Kao LW, Brizendine EJ, Welch JL, Cordell WH, Alonso RJ (2003) Hyperbaric oxygen therapy in acute ischemic stroke: results of the hyperbaric oxygen in acute ischemic stroke trial pilot study. Stroke 34:571–574

    Article  PubMed  Google Scholar 

  236. Flynn EP, Auer RN (2002) Eubaric hyperoxemia and experimental cerebral infarction. Ann Neurol 52:566–572

    Article  PubMed  Google Scholar 

  237. Singhal AB, Wang X, Sumii T, Mori T, Lo EH (2002) Effects of normobaric hyperoxia in a rat model of focal cerebral ischemia-reperfusion. J Cereb Blood Flow Metab 22:861–868

    PubMed  Google Scholar 

  238. Singhal AB, Dijkhuizen RM, Rosen BR, Lo EH (2002) Normobaric hyperoxia reduces MRI diffusion abnormalities and infarct size in experimental stroke. Neurology 58: 945–952

    PubMed  Google Scholar 

  239. Singhal AB, Benner T, Roccatagliata L, Schaefer PW, Koroshetz WJ, Buonanno FS, Lo EH, Gonzalez RG, Sorensen AG (2004) Normobaric hyperoxia therapy in hyperacute human stroke: attenuation of DWI abnormalities and improved NIHSS scores (abstract). Stroke 35:293

    Google Scholar 

  240. Singhal AB, Ratai E, Benner T, Koroshetz WJ, Roccatagliata L, Lopez C, Schaefer P, Lo EH, Gonzalez RG, Sorensen AG (2004) Normobaric hyperoxia in hyperacute stroke: serial NIHSS scores, diffusion-perfusion MRI and MR-spectroscopy (abstract). Neurology 62:464

    Google Scholar 

  241. Liu S, Shi H, Liu W, Furuichi T, Timmins GS, Liu KJ (2004) Interstitial pO2 in ischemic penumbra and core are differentially affected following transient focal cerebral ischemia in rats. J Cereb Blood Flow Metab 24:343–349

    CAS  PubMed  Google Scholar 

  242. Watson BD, Busto R, Goldberg WJ, Santiso M, Yoshida S, Ginsberg MD (1984) Lipid peroxidation in vivo induced by reversible global ischemia in rat brain. J Neurochem 42:268–274

    CAS  PubMed  Google Scholar 

  243. Mickel HS, Vaishnav YN, Kempski O, von Lubitz D, Weiss JF, Feuerstein G (1987) Breathing 100% oxygen after global brain ischemia in mongolian gerbils results in increased lipid peroxidation and increased mortality. Stroke 18:426–430

    CAS  PubMed  Google Scholar 

  244. Dubinsky JM, Kristal BS, Elizondo-Fournier M (1995) An obligate role for oxygen in the early stages of glutamate-induced, delayed neuronal death. J Neurosci 15:7071–7078

    CAS  PubMed  Google Scholar 

  245. PR OGRESS Collaborative Group (2001) Randomised trial of a perindopril-based blood-pressure-lowering regimen among 6,105 individuals with previous stroke or transient ischaemic attack. Lancet 358:1033–1041

    Google Scholar 

  246. Chapman N, Huxley R, Anderson C, Bousser MG, Chalmers J, Colman S, Davis S, Donnan G, MacMahon S, Neal B, Warlow C, Woodward M (2004) Effects of a perindopril-based blood pressure-lowering regimen on the risk of recurrent stroke according to stroke subtype and medical history: the progress trial. Stroke 35:116–121

    Article  CAS  PubMed  Google Scholar 

  247. Heart Protection Study Collaborative Group (2002) MRC/BHF heart protection study of cholesterol lowering with simvastatin in 20,536 high-risk individuals: a randomised placebo-controlled trial. Lancet 360:7–22

    Google Scholar 

  248. Hope Study and Micro-Hope Substudy Group (2000) Effects of ramipril on cardiovascular and microvascular outcomes in people with diabetes mellitus: results of the Hope study and micro-Hope substudy. Heart outcomes prevention evaluation study investigators. Lancet 355:253–259

    Google Scholar 

  249. Laufs U, La Fata V, Plutzky J, Liao JK (1998) Upregulation of endothelial nitric oxide synthase by HMG CoA reductase inhibitors. Circulation 97:1129–1135

    CAS  PubMed  Google Scholar 

  250. Yamada M, Huang Z, Dalkara T, Endres M, Laufs U, Waeber C, Huang PL, Liao JK, Moskowitz MA (2000) Endothelial nitric oxide synthase-dependent cerebral blood flow augmentation by L-arginine after chronic statin treatment. J Cereb Blood Flow Metab 20:709–717

    CAS  PubMed  Google Scholar 

  251. Endres M, Laufs U, Huang Z, Nakamura T, Huang P, Moskowitz MA, Liao JK (1998) Stroke protection by 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase inhibitors mediated by endothelial nitric oxide synthase. Proc Natl Acad Sci USA 95:8880–8885

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Singhal, A.B., Lo, E.H., Dalkara, T., Moskowitz, M.A. (2006). Ischemic Stroke: Basic Pathophysiology and Neuroprotective Strategies. In: González, R.G., Hirsch, J.A., Koroshetz, W., Lev, M.H., Schaefer, P.W. (eds) Acute Ischemic Stroke. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-30810-5_1

Download citation

  • DOI: https://doi.org/10.1007/3-540-30810-5_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25264-1

  • Online ISBN: 978-3-540-30810-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics