Skip to main content

Unified Slip-Line Field Theory for Plane Strain Problem

  • Chapter
Generalized Plasticity
  • 2145 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Bibliography

  • Chen G. and Baker G (2001). Gradient-dependent plasticity with a 3-node incompatible element for the plastic multiplier. In: Valliappan S and Khalili N eds., Computational Mechanics: New Frontiers for the New Millennium, Amsterdam: Elsevier, 1129–1134.

    Google Scholar 

  • de Borst R., Pamin J and Sluys LJ (1995) Computation issues in gradient plasticity, In: Continuum Models for Materials with Micro-structure, H.B. Mfihlhaus (ed.) Wiley: Chichester, 159–200.

    Google Scholar 

  • Drucker DC, Greenberg HJ and Prager W (1951) The safety factor of an elastic-plastic body J. Appl. Mech., 18: 371–378.

    MathSciNet  Google Scholar 

  • Ford H (1954) The Theory of Plasticity in Relation to Engineering Application, J. AppL Math. Phys., 5: 1–35.

    Article  MATH  Google Scholar 

  • Geiringer H (1930) Beit zum Vollstiindigen ebenen Plastizitits-problem, Proc 3rd Intern. Congr. Appl. Mech, 2: 185–190.

    Google Scholar 

  • Hencky H(1923) Ueber einige statisch bestimmte Faelle des Gleichgewichts in plastischen Koerpern Z. angew. Math Mech., 3: 245–251.

    Google Scholar 

  • Hill R (1949) The Plastic Yielding of Notched Bars Under Tension, Quart. Mech. AppL Math., 2: 40–52.

    MATH  Google Scholar 

  • Hill R(1956), The Mechanics of Quasi-Static Plastic Deformation in Metals, In: Survey in Mechanics, G. K. Batcheler and R. M. Davis eds, Cambridge

    Google Scholar 

  • Johnson W and Mellor PB (1962), Plasticity for Mechanical Engineers, Van Nostrand, Princeton, N.J.

    Google Scholar 

  • Johnson W, Sowerby R, Venter RD (1982), Plane-Strain Slip Line Fields for Metal Deformation Processes—A Source Book and Bibliography, Pergamon Press, Oxford.

    Google Scholar 

  • Moore ID and and Rowe RK (1991) Objective solutions for bearing capacity of strain-softening soils. In: Beer G, Booker JR and Carter JP eds. Computer Methods and Advances in Geomechanics. Rotterdam: A.A.Balkema, Vol.2,1183–1189.

    Google Scholar 

  • Panayotounakos D (1996) Ad Hoc Exact Solutions for the Stress and Velocity Fields in Rigid Perfectly Plastic Materials Under Plane-Strain Conditions. Int. J. Plast., 12:1069–1190.

    Article  MATH  Google Scholar 

  • Prager W (1955) The Theory of Plasticity: A Survey of Recent Achievements, Proc. Inst. Mech. Eng., 169: 41–57.

    MathSciNet  Google Scholar 

  • Prager W (1959) Introduction to Plasticity, Addison-Wesley, Reading, Mass.

    Google Scholar 

  • Prager W and Hodge P G Jr (1951) Theory of Perfectly Plastic Solids, Wiley New York.

    Google Scholar 

  • Prandtl L (1920) l∼ber die H∼irte Plastischer Koerper, Goettinger Nachr., Math. Phys. KI.,74–85.

    Google Scholar 

  • Thomsen EG, Yang CT and Kobayashi S (1965) Mechanics of Plastic Deformation in Metal Processing, Macmillan, New York.

    Google Scholar 

  • Wunderlich, Findeib and Cramer in (2001) Finite element analysis of bearing capacities in geomechanics considering dilatant and contractant constitutive laws. In: Valliappan S and Khalili N eds., Computational Mechanics: New Frontiers for the New Millennium, Amsterdam: Elsevier, 2001, 533–538.

    Google Scholar 

  • Yu Mao-hong (1983), Twin Shear Stress Criterion, Int. J. of Mech. Sci., 25(1), 71–74

    Article  Google Scholar 

  • Yu Mao-hong, He, Li-nan, Song, Ling-yu (1985), Twin Shear Stress Theory and Its Generalization, Scientia Sinica (Science in China), Series A, (English edn.), 28(11), 1174–1183.

    Google Scholar 

  • Yu Mao-hong and He Li-nan (1991), A new model and theory on yield and failure of materials under complex stress state. In: Materials Behaviour of Matterials-VI.

    Google Scholar 

  • Yu Mao-hong, He Li-nan (1992), Generalized Twin Shear Stress Yield Criterion and Its Generalization, Chinese Science Bulletin (English edn.) 37(24), 2085–2089.

    Google Scholar 

  • Yu Mao-hong, et al (1992), Computer Image Analysis of the Plastic Zone of Structure, Journal of Xi’an Jiaotong University, 26(2), 121–122 (in Chinese).

    Google Scholar 

  • Yu Mao-Hong, Liu Jian-Yu and Ma Guo-wei (1994), Twin-shear slip line theory: orthogonal and non-orthogonal slip line fields. Journal of Xi’an Jiaotong University, 28(2):122–126.

    Google Scholar 

  • Yu Mao-hong. (1998) Twin-shear Theory and Its Applications. Beijing: Science Press (in Chinese).

    Google Scholar 

  • Yu MH and Fan SC eds (1998) Strength Theory: Applications, Developments and Prospects for the 21st Century. New York, Beijing: Science Press.

    Google Scholar 

  • Yu Mao-hong. (2004) Unified Strength Theory and Its Applications. Berlin: Springer.

    Google Scholar 

  • Zenkiewicz OC(1992), Computational Mechanics Today, Int. J. Numer. Methods in Engrg., 34, 9–33.

    Google Scholar 

  • Zhang YQ (2000) Analysis of damage and Discontinuous bifurcations for Elarto-Plastic Geomaterials. Dissertation of Doctor at Xi’an Jiaotong University, Xi’an, China (in Chinese)

    Google Scholar 

  • Zhang YQ and Yu MH (2001) Discontinuous bifurcations of metallic materials for plane stress. Chinese J. of Mechanical Engineering, 37(4): 62–85 (in Chinese, English Abstract).

    Google Scholar 

  • Zhang YQ and Yu MH (2001) Discontinuous bifurcations of elasto-plastic materials for plane stress. Acta Mechanica Sinica, 33(5): 706–713 (in Chinese, English Abstract).

    MathSciNet  Google Scholar 

  • Zimmermann Th and Commend S (2001) Stabilized finite element applications in geomechanics. In: Valliappan S and Khalili N eds., Computational Mechanics: New Frontiers for the New Millennium, Amsterdam: Elsevier, 2001, 533–538.

    Google Scholar 

  • Березанлев ВГ (1952) Осесимметричная Задача Теории Пр едельного Равно весия Сыпучей Ср еды. Москва: Гос. И зд. Тех. Тео. Литера туры (in Russia)

    Google Scholar 

  • Соколовский ВВ (1942) Статика Сыпучей Среды. изд. АН СССР, Москва (in Russia)

    Google Scholar 

  • Соколовский ВВ (1960) Статика Сыпуей с реды (Third ed.).Гос. Изд. Физ-Мат. Литературы. Москва (in Russia)

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2006). Unified Slip-Line Field Theory for Plane Strain Problem. In: Generalized Plasticity. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-30433-9_9

Download citation

  • DOI: https://doi.org/10.1007/3-540-30433-9_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25127-9

  • Online ISBN: 978-3-540-30433-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics