Skip to main content

Biological Models in Treatment Planning

  • Chapter
New Technologies in Radiation Oncology

Part of the book series: Medical Radiology ((Med Radiol Radiat Oncol))

18.8 Conclusion

Several biological models have been developed. Although these models give a correct description of the main characteristics of the radiation response, great caution has to be taken if these models are to be applied to patients.

While the linear-quadratic model provides a good description of experimental settings, a larger uncertainty is involved in the prediction of iso-effects for clinical applications. The more advanced NTCP and TCP models should only be applied for relative, rather than absolute, predictions of effect probabilities. When using relative values, the uncertainty of the predictions should be considered to decide whether a detected difference is really significant. As TCP/NTCP models are currently not completely validated, integration of these models into the cost function of the dose optimisation algorithm is not warranted. Whether it is possible to arrive at fully biologically optimised treatment plans for photon therapy has to be investigated by further research.

In this context, the clinical application of heavy charged particles plays an exceptional role as biological optimisation is routinely performed and an adequate RBE model is an essential prerequisite. The applied RBE model may still contain some degree of uncertainty which has to be considered carefully at treatment plan assessment and dose prescription.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amols HI, Zaider M, Mayes MK et al. (1997) Physician/patient-driven risk assignment in radiation oncology: reality or fancy? In J Radiat Oncol Biol Phys 38:455–461

    CAS  Google Scholar 

  • Barendsen GW (1982) Dose fractionation, dose rate and isoeffect relationships for normal tissue responses. Int J Radiat Oncol Biol Phys 8:1981–1997

    PubMed  CAS  Google Scholar 

  • Borkenstein K, Levegrün S, Peschke P (2004) Modeling and computer simulations of tumor growth and tumor response to radiotherapy. Radiat Res 162:71–83

    PubMed  CAS  Google Scholar 

  • Brahme A (2001) Individualizing cancer treatment: biological optimization models in treatment planning and delivery. Int J Radiat Oncol Biol Phys 49:327–337

    Article  PubMed  CAS  Google Scholar 

  • Brenner DJ, Hall JH (1991) Conditions for the equivalence of continuous to pulsed low dose rate brachytherapy. Int J Radiat Oncol Biol Phys 20:181–190

    PubMed  CAS  Google Scholar 

  • Brenner DJ, Hlatky LR, Hahnfeldt PJ et al. (1995) A convenient extension of the linear-quadratic model to include redistribution and reoxygenation. Int J Radiat Oncol Biol Phys 32:379–390

    PubMed  CAS  Google Scholar 

  • Burman C (2002) Fitting of tissue tolerance data to analytic function: improving the therapeutic ratio. Front Radiat Ther Oncol 37:151–162

    PubMed  Google Scholar 

  • Burman C, Kutcher GJ, Emami B et al. (1991) Fitting normal tissue tolerance data to an analytic function. Int J Radiat Oncol Biol Phys 21:123–135

    PubMed  CAS  Google Scholar 

  • Cohen L (1982) The tissue volume factor in radiation oncology. Int J Radiat Oncol Biol Phys 8:1771–1774

    PubMed  CAS  Google Scholar 

  • Dale RG (1986) The application of the linear-quadratic model to fractionated radiotherapy when there is incomplete normal tissue recovery between fractions, and possible implication for treatments involving multiple fractions per day. Br J Radiol 59:919–927

    PubMed  CAS  Google Scholar 

  • Dale RG, Huczkowski J, Trott KR (1988) Possible dose rate dependence of recovery kinetics as deduced from a preliminary analysis of the effects of fractionated irradiations at varying dose rates. Br J Radiol 61:153–157

    PubMed  CAS  Google Scholar 

  • Emami B, Lyman J, Brouwn A et al. (1991) Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys 21:109–122

    PubMed  CAS  Google Scholar 

  • Flickinger JC (1989) An integrated logistic formula for prediction of complication from radiosurgery. Int J Radiat Oncol Biol Phys 17:879–885

    PubMed  CAS  Google Scholar 

  • Flickinger JC, Schell MC, Larson D (1990) Estimation of complications for linear accelerator radiosurgery with the integrated logistic formula. Int J Radiat Oncol Biol Phys 19:143–148

    PubMed  CAS  Google Scholar 

  • Fowler JF (1984) What next in fractionated radiotherapy? Br J Cancer 49(Suppl VI):285–300

    Google Scholar 

  • Fowler JF (1989) The linear-quadratic formula and progress in fractionated radiotherapy. Br J Radiol 62:679–694

    PubMed  CAS  Google Scholar 

  • Fowler JF (1992) Brief summary of radiobiological principles in fractionated radiotherapy. Semin Radiat Oncol 2:16–21

    Google Scholar 

  • Gilbert CW, Hendry JH, Major D (1980) The approximation in the formulation for survival S=exp-(αD+βD2). Int J Radiat Biol 37:469–471

    CAS  Google Scholar 

  • Haberer T, Becher W, Schardt D at al. (1993) Magnetic scanning system for heavy ion therapy. Nucl Instrum Meth A330:296–305

    CAS  Google Scholar 

  • Jackson A, Kutscher GJ, Yorke ED (1993) Probability of radiation induced complications for normal tissues with parallel architecture subject to non-uniform irradiation. Med Phys 20:613–625

    PubMed  CAS  Google Scholar 

  • Källman P, Agren A, Brahme A (1992) Tumour and normal tissue responses to fractionated non-uniform dose delivery. Int J Radiat Biol 62:249–262

    PubMed  Google Scholar 

  • Kanai T, Furusawa Y, Fukutsu K et al. (1997) Irradiation of mixed beam and design of spread-out Bragg peak for heavy-ion radiotherapy. Radiat Res 147:78–85

    PubMed  CAS  Google Scholar 

  • Kanai T, Endo M, Minohara S et al. (1999) Biophysical characteristics of HIMAC clinical irradiation system for heavy-ion radiation therapy. Int J Radiat Oncol Biol Phys 44:201–210

    Article  PubMed  CAS  Google Scholar 

  • Karger CP, Hartmann GH (2001) Determination of tolerance dose uncertainties and optimal design of dose response experiments with small animal numbers. Strahlenther Onkol 177:37–42

    PubMed  CAS  Google Scholar 

  • Kraft G (2000) Tumortherapy with heavy charged particles. Prog Part Nucl Phys 45:S473–S544

    Article  Google Scholar 

  • Kraft G, Scholz M, Bechthold U (1999) Tumor therapy and track structure. Radiat Environ Biophys 38:229–237

    Article  PubMed  CAS  Google Scholar 

  • Krämer M, Scholz M (2000) Treatment planning for heavy-ion radiotherapy: calculation and optimization of biologically effective dose. Phys Med Biol 45:3319–3330

    PubMed  Google Scholar 

  • Krämer M, Weyrather WK, Scholz M (2003) The increased relative biological efficiency of heavy charged particles: from radiobiology to treatment planning. Technol Cancer Res Treat 2:427–436

    PubMed  Google Scholar 

  • Kutcher GJ (1996) Quantitative plan evaluation: TCP/NTCP models. Front Radiat Ther Oncol 29:67–80

    PubMed  CAS  Google Scholar 

  • Kutcher GJ, Burman C (1989) Calculation of complication probability factors for non-uniform normal tissue irradiation: the effective volume model. Int J Radiat Oncol Biol Phys 16:1623–1630

    PubMed  CAS  Google Scholar 

  • Kutcher GJ, Burman C, Brewster L (1991) Histogram reduction method for calculating complication probabilities for three-dimensional treatment planning evaluations. Int J Radiat Oncol Biol Phys 21:137–146

    PubMed  CAS  Google Scholar 

  • Larson DA, Flickinger JC, Loeffler JS (1993) The radiobiology of radiosurgery. Int J Radiat Oncol Biol Phys 25:557–561

    PubMed  CAS  Google Scholar 

  • Lax I, Karlsson B (1996) Prediction of complications in gamma knife radiosurgery of ateriovenous malformations. Acta Oncol 35:49–55

    Article  PubMed  CAS  Google Scholar 

  • Ling CC, Chui CS (1993) Stereotactic treatment of brain tumors with radioactive implants or external photon beams: radiobiophysical aspects. Radiother Oncol 26:11–18

    PubMed  CAS  Google Scholar 

  • Lyman JT (1985) Complication probability as assessed from dose-volume-histograms. Radiat Res 104:S13–S19

    Google Scholar 

  • Lyman JT, Wolbarst AB (1987) Optimization of radiation therapy III: a method of assessing complication probabilities from dose volume histograms. Int J Radiat Oncol Biol Phys 13:103–109

    PubMed  CAS  Google Scholar 

  • Lyman JT, Wolbarst AB (1989) Optimization of radiation therapy IV: a dose volume histogram reduction algorithm. Int J Radiat Oncol Biol Phys 17:433–436

    PubMed  CAS  Google Scholar 

  • Niemierko A (1998) Radiobiological models of tissue response to radiation in treatment planning systems. Tumori 84:140–143

    PubMed  CAS  Google Scholar 

  • Niemierko A, Goitein M (1991) Calculation of normal tissue complication probability and dose-volume histogram reduction schemes for tissue with critical element architecture. Radiother Oncol 20:166–176

    Article  PubMed  CAS  Google Scholar 

  • Niemierko A, Goitein M (1993a) Modelling of normal tissue response to radiation: the critical volume model. Int J Radiat Oncol Biol Phys 25:135–145

    PubMed  CAS  Google Scholar 

  • Niemierko A, Goitein M (1993b) Implementation of a model for estimating tumor control probability for an inhomogeneously irradiated tumor. Radiother Oncol 29:140–147

    Article  PubMed  CAS  Google Scholar 

  • Nilsson P, Thames HD, Joiner MC (1990) A generalized formulation of the incomplete-repair model for cell survival and tissue response to fractionated low dose-rate irradiation. Int J Radiat Biol 57:127–142

    PubMed  CAS  Google Scholar 

  • Paganetti H (2003) Significance and implementation of RBE variations in proton beam therapy. Technol Cancer Res Treat 2:413–426

    PubMed  CAS  Google Scholar 

  • Pop LAM, van den Broek JFCM, Visser AG, van der Kogel AJ (1996) Constraints in the use of repair half time and mathematical modelling for the clinical application of HDR and PDR treatment schedules as an alternative for LDR brachytherapy. Radiother Oncol 38:153–162

    Article  PubMed  CAS  Google Scholar 

  • Prasad SC (1992) Linear quadratic model and biologically equivalent dose for single fraction treatments. Med Dosim 17:101–102

    PubMed  CAS  Google Scholar 

  • Roberts SA, Hendry JH (1998) A realistic closed-form radiobiological model of clonical tumor-control data incorporating intertumor heterogeneity. Int J Radiat Oncol Biol Phys 41:689–699

    PubMed  CAS  Google Scholar 

  • Sanchez-Nieto B, Nahum AE (1999) The delta-TCP concept: a clinically useful measure of tumor control probability. Phys Med Biol 44:369–380

    CAS  Google Scholar 

  • Scholz M, Kraft G (1994) Calculation of heavy ion inactivation probabilities based on track structure, X-ray sensitivity and target size. Radiat Proton Dosim 52:29–33

    CAS  Google Scholar 

  • Scholz M, Kellerer AM, Kraft-Weyrather G et al. (1997) Computation of cell survival in heavy ion beams for therapy. The model and its approximation. Radiat Environ Biophys 36:59–66

    Article  PubMed  CAS  Google Scholar 

  • Schultheiss TE, Orton CG, Peck RA (1983) Models in radiotherapy: volume effects. Med Phys 10:410–415

    Article  PubMed  CAS  Google Scholar 

  • Schultheiss TE, Zagars GK, Peters LJ (1987) An explanatory hypothesis for early-and late-effect parameter values in the LQ model. Radiother Oncol 9:241–248

    Article  PubMed  CAS  Google Scholar 

  • Thames HD (1985) An “incomplete-repair” model for survival after fractionated and continuous irradiations. Int J Radiat Biol 47:319–339

    CAS  Google Scholar 

  • Thames HD, Bentzen SM, Turesson I et al. (1989) Fractionation parameters for human tissues and tumors. Int J Radiat Biol 56:701–710

    PubMed  CAS  Google Scholar 

  • Thames HD, Withers HR, Peters LJ et al. (1982) Changes in early and late responses with altered dose fractionation: implications for dose survival relationships. Int J Radiat Oncol Biol Phys 8:219–226

    PubMed  Google Scholar 

  • Tsujii H, Morita S, Miyamoto T et al. (2002) Experiences of carbon ion radiotherapy at NIRS. In: Kogelnik HD, Lukas P, Sedlmayer F (eds) Progress in radio-oncology, vol 7. Monduzzi Editore, Bologna, pp 393–405

    Google Scholar 

  • Ulmer W (1986) Some aspects of the chronological dose distribution in the radiobiology and radiotherapy. Strahlenther Onkol 162:374–385

    PubMed  CAS  Google Scholar 

  • Van Vliet-Vroegindeweij C, Wheeler F, Stecher-Rasmussen F et al. (2001) Microdosimetry model for Boron neutron capture therapy. Part II. Theoretical estimation of the effectiveness function and surviving fractions. Radiat Res 155:498–502

    PubMed  Google Scholar 

  • Wambersie A, Menzel HG (1993) RBE in fast neutron therapy and boron neutron capture therapy. A useful concept or a misuse. Strahlenther Oncol 169:57–64

    CAS  Google Scholar 

  • Webb S, Nahum AE (1993) A model for calculating tumor control probability in radiotherapy including the effects of inhomogeneous distributions of dose and clonogenic cells. Phys Med Biol 38:653–666

    PubMed  CAS  Google Scholar 

  • Wilkens JJ, Oelfke U (2003) Analytical linear energy transfer calculations for proton therapy. Med Phys 30:806–815

    Article  PubMed  CAS  Google Scholar 

  • Withers HR (1986) Predicting late normal tissue responses. Int J Radiat Oncol Biol Phys 12:693–698

    PubMed  CAS  Google Scholar 

  • Withers HR (1992) Biologic basis of radiation therapy. In: Perez CA, Brady LW, (eds) Principles and practice of radiation oncology, 2nd edn. Lippincott, Philadelphia, pp 64–96

    Google Scholar 

  • Withers HR, Taylor JMG, Maciejewski B (1988) Treatment volume and tissue tolerance. Int J Radiat Oncol Biol Phys 14:751–759

    PubMed  CAS  Google Scholar 

  • Wolbarst AB (1984) Optimization of radiation therapy. Part II. The critical-voxel model. Int J Radiat Oncol Biol Phys 10:741–745

    PubMed  CAS  Google Scholar 

  • Wolbarst AB, Chin LM, Svenson GK (1982) Optimization of radiation therapy: integral-response of a model biological system. Int J Radiat Oncol Biol Phys 8:1761–1769

    PubMed  CAS  Google Scholar 

  • Yashkin PN, Silin DI, Zolotov VA et al. (1995) Relative biological effectiveness of proton medical beam at Moscow synchrotron determined by the Chinese hamster cells assay. Int J Radiat Oncol Biol Phys 31:535–540

    Article  PubMed  CAS  Google Scholar 

  • Yorke ED, Kutscher GJ, Jackson A et al. (1993) Probability of radiation induced complications in normal tissues with parallel architecture under conditions of uniform whole or partial organ irradiation. Radiother Oncol 26:226–237

    Article  PubMed  CAS  Google Scholar 

  • Zamenhof R, Redmond E, Solares G et al. (1996) Monte-Carlo based treatment planning for Boron neutron capture therapy using custom designed models automatically generated from CT data. Int J Radiat Oncol Biol Phys 35:383–397

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Karger, C.P. (2006). Biological Models in Treatment Planning. In: Schlegel, W., Bortfeld, T., Grosu, AL. (eds) New Technologies in Radiation Oncology. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-29999-8_18

Download citation

  • DOI: https://doi.org/10.1007/3-540-29999-8_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00321-2

  • Online ISBN: 978-3-540-29999-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics