Skip to main content

Micro/Nanotribology and Materials Characterization Studies Using Scanning Probe Microscopy

  • Reference work entry
Springer Handbook of Nanotechnology

Part of the book series: Springer Handbooks ((SHB))

Abstract

A sharp AFM/FFM tip sliding on a surface simulates just one asperity contact. However, asperities come in all shapes and sizes. The effect of radius of a single asperity (tip) on the friction/adhesion performance can be studied using tips of different radii. AFM/FFM are used to study the various tribological phenomena, which include surface/roughness, adhesion, friction, scratching, wear, indentation, detection of material transfer, and boundary lubrication.

Directionality in the friction is observed on both micro- and macroscales and results from the surface roughness and surface preparation. Microscale friction is generally found to be smaller than the macrofriction, as there is less plowing contribution in microscale measurements. The mechanism of material removal on the microscale is studied. Evolution of wear has also been studied using AFM. Wear is found to be initiated at nanoscratches. For a sliding interface requiring near-zero friction and wear, contact stresses should be below the hardness of the softer material to minimize plastic deformation, and surfaces should be free of nanoscratches. Wear precursors can be detected at early stages of wear by using surface potential measurements. Detection of material transfer on a nanoscale is possible with AFM. In situ surface characterization of local deformation of materials and thin coatings can be carried out using a tensile stage inside an AFM.

Boundary lubrication studies can be conducted using AFM. Chemically bonded lubricant films and self-assembled monolayers are superior in friction and wear resistance. For chemically bonded lubricant films, the adsorption of water, the formation of meniscus and its change during sliding, viscosity, and surface properties play an important role on the friction, adhesion, and durability of these films. For SAMs, their friction mechanism is explained by a so-called “molecular spring” model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

AFM:

atomic force microscope/microscopy

DLC:

diamond-like carbon

FFM:

friction force microscope/microscopy

HOPG:

highly oriented pyrolytic graphite

LFM:

lateral force microscope

ME:

metal evaporated

MEMS:

microelectromechanical systems

MP:

metal particle

NEMS:

nanoelectromechanical systems

PECVD:

plasma enhanced CVD

PET:

poly(ethylene terephthalate)

PFPE:

perfluoropolyether

PZT:

lead zirconate titanate

RH:

relative humidity

SAM:

self-assembling monolayer

SEM:

scanning electron microscope/microscopy

SFA:

surface forces apparatus

STM:

scanning tunneling microscope/microscopy

TEM:

transmission electron microscopy

TESP:

tapping-mode etched silicon probe

References

  1. I. L. Singer, H. M. Pollock: Fundamentals of Friction: Macroscopic and Microscopic Processes, Nato Sci. Ser. E, Vol. 220 (Kluwer, Dordrecht 1992)

    Google Scholar 

  2. B. N. J. Persson, E. Tosatti: Physics of Sliding Friction, Nato Sci. Ser. E, Vol. 311 (Kluwer, Dordrecht 1996)

    Google Scholar 

  3. B. Bhushan: Micro/Nanotribology and Its Applications, Nato Sci. Ser. E, Vol. 330 (Kluwer, Dordrecht 1997)

    Google Scholar 

  4. B. Bhushan: Handbook of Micro/Nanotribology, 2nd edn. (CRC, Boca Raton 1999)

    Google Scholar 

  5. B. Bhushan: Nanoscale tribophysics and tribomechanics, Wear 225-229 (1999) 465–492

    Article  CAS  Google Scholar 

  6. B. Bhushan: Wear and mechanical characterisation on micro- to picoscales using AFM, Int. Mat. Rev. 44 (1999) 105–117

    Article  CAS  Google Scholar 

  7. B. Bhushan: Modern Tribology Handbook, Vol. 1: Principles of Tribology (CRC, Boca Raton 2001)

    Google Scholar 

  8. B. Bhushan: Fundamentals of tribology and bridging the gap between the macro- and micro/nanoscales, NATO Sci. Ser. E, Vol. 10 (Kluwer, Dordrecht 2001)

    Google Scholar 

  9. B. Bhushan: Nano- to microscale wear and mechanical characterization studies using scanning probe microscopy, Wear 251 (2001) 1105–1123

    Article  Google Scholar 

  10. B. Bhushan: Introduction to Tribology (Wiley, New York 2002)

    Google Scholar 

  11. B. Bhushan, J. N. Israelachvili, U. Landman: Nanotribology: Friction, wear and lubrication at the atomic scale, Nature 374 (1995) 607–616

    Article  CAS  Google Scholar 

  12. H. J. Guntherodt, D. Anselmetti, E. Meyer: Forces in Scanning Probe Methods, Nato Sci. Ser. E, Vol. 286 (Kluwer, Dordrecht 1995)

    Google Scholar 

  13. B. Bhushan: Tribology and Mechanics of Magnetic Storage Devices, 2nd edn. (Springer, New York 1996)

    Google Scholar 

  14. B. Bhushan: Tribology Issues and Opportunities in MEMS (Kluwer, Dordrecht 1998)

    Google Scholar 

  15. G. Binnig, C. F. Quate, Ch. Gerber: Atomic force microscopy, Phys. Rev. Lett. 56 (1986) 930–933

    Article  Google Scholar 

  16. G. Binnig, Ch. Gerber, E. Stoll, T. R. Albrecht, C. F. Quate: Atomic resolution with atomic force microscope, Europhys. Lett. 3 (1987) 1281–1286

    Article  CAS  Google Scholar 

  17. C. M. Mate, G. M. McClelland, R. Erlandsson, S. Chiang: Atomic-scale friction of a tungsten tip on a graphite surface, Phys. Rev. Lett. 59 (1987) 1942–1945

    Article  CAS  Google Scholar 

  18. B. Bhushan, J. Ruan: Atomic-scale friction measurements using friction force microscopy: part II – application to magnetic media, ASME J. Tribol. 116 (1994) 389–396

    Article  CAS  Google Scholar 

  19. J. Ruan, B. Bhushan: Atomic-scale friction measurements using friction force microscopy: part I – general principles and new measurement techniques, ASME J. Tribol. 116 (1994) 378–388

    Article  CAS  Google Scholar 

  20. J. Ruan, B. Bhushan: Atomic-scale and microscale friction of graphite and diamond using friction force microscopy, J. Appl. Phys. 76 (1994) 5022–5035

    Article  CAS  Google Scholar 

  21. J. Ruan, B. Bhushan: Frictional behavior of highly oriented pyrolytic graphite, J. Appl. Phys. 76 (1994) 8117–8120

    Article  CAS  Google Scholar 

  22. B. Bhushan, V. N. Koinkar, J. Ruan: Microtribology of magnetic media, Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol. 208 (1994) 17–29

    Article  Google Scholar 

  23. B. Bhushan, S. Sundararajan: Micro/nanoscale friction and wear mechanisms of thin films using atomic force and friction force microscopy, Acta Mater. 46 (1998) 3793–3804

    Article  CAS  Google Scholar 

  24. V. Scherer, W. Arnold, B. Bhushan: Active friction control using ultrasonic vibration. In: Tribology Issues and Opportunities in MEMS, ed. by B. Bhushan (Kluwer, Dordrecht 1998) pp. 463–469

    Google Scholar 

  25. V. Scherer, W. Arnold, B. Bhushan: Lateral force microscopy using acoustic friction force microscopy, Surf. Interface Anal. 27 (1999) 578–587

    Article  CAS  Google Scholar 

  26. B. Bhushan, A. V. Kulkarni, V. N. Koinkar, M. Boehm, L. Odoni, C. Martelet, M. Belin: Microtribological characterization of self-assembled and Langmuir–Blodgett monolayers by atomic and friction force microscopy, Langmuir 11 (1995) 3189–3198

    Article  CAS  Google Scholar 

  27. V. N. Koinkar, B. Bhushan: Micro/nanoscale studies of boundary layers of liquid lubricants for magnetic disks, J. Appl. Phys. 79 (1996) 8071–8075

    Article  CAS  Google Scholar 

  28. V. N. Koinkar, B. Bhushan: Microtribological studies of unlubricated and lubricated surfaces using atomic force/friction force microscopy, J. Vac. Sci. Technol. A. 14 (1996) 2378–2391

    Article  CAS  Google Scholar 

  29. B. Bhushan, H. Liu: Nanotribological properties and mechanisms of alkylthiol and biphenyl thiol self-assembled monolayers studied by AFM, Phys. Rev. B 63 (2001) 245412–1–245412–11

    Article  Google Scholar 

  30. H. Liu, B. Bhushan: Nanotribological characterization of molecularly-thick lubricant films for applications to MEMS/NEMS by AFM, Ultramicroscopy 97 (2003) 321–340

    Article  CAS  Google Scholar 

  31. B. Bhushan, V. N. Koinkar: Tribological studies of silicon for magnetic recording applications, J. Appl. Phys. 75 (1994) 5741–5746

    Article  CAS  Google Scholar 

  32. V. N. Koinkar, B. Bhushan: Microtribological properties of hard amorphous carbon protective coatings for thin film magnetic disks and heads, Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol. 211 (1997) 365–372

    Article  Google Scholar 

  33. S. Sundararajan, B. Bhushan: Development of a continuous microscratch technique in an atomic force microscope and its application to study scratch resistance of ultra-thin hard amorphous carbon coatings, J. Mater. Res. 16 (2001) 75–84

    Article  Google Scholar 

  34. B. Bhushan, V. N. Koinkar: Nanoindentation hardness measurements using atomic force microscopy, Appl. Phys. Lett. 64 (1994) 1653–1655

    Article  CAS  Google Scholar 

  35. B. Bhushan, A. V. Kulkarni, W. Bonin, J. T. Wyrobek: Nano/picoindentation measurement using a capacitance transducer system in atomic force microscopy, Philos. Mag. 74 (1996) 1117–1128

    Article  CAS  Google Scholar 

  36. B. Bhushan, C. Dandavate: Thin-film friction and adhesion studies using atomic force microscopy, J. Appl. Phys. 87 (2000) 1201–1210

    Article  CAS  Google Scholar 

  37. B. Bhushan: Micro/nanotribology and its applications to magnetic storage devices and MEMS, Tribol. Int. 28 (1995) 85–95

    Article  CAS  Google Scholar 

  38. D. DeVecchio, B. Bhushan: Use of a nanoscale Kelvin probe for detecting wear precursors, Rev. Sci. Instrum. 69 (1998) 3618–3624

    Article  CAS  Google Scholar 

  39. B. Bhushan, A. V. Goldade: Measurements and analysis of surface potential change during wear of single crystal silicon (100) at ultralow loads using Kelvin probe microscopy, Appl. Surf. Sci 157 (2000) 373–381

    Article  CAS  Google Scholar 

  40. B. Bhushan, A. V. Goldade: Kelvin probe microscopy measurements of surface potential change under wear at low loads, Wear 244 (2000) 104–117

    Article  CAS  Google Scholar 

  41. M. S. Bobji, B. Bhushan: Atomic force microscopic study of the micro-cracking of magnetic thin films under tension, Scripta Mater. 44 (2001) 37–42

    Article  CAS  Google Scholar 

  42. M. S. Bobji, B. Bhushan: In-situ microscopic surface characterization studies of polymeric thin films during tensile deformation using atomic force microscopy, J. Mater. Res. 16 (2001) 844–855

    Article  CAS  Google Scholar 

  43. P. Maivald, H. J. Butt, S. A. C. Gould, C. B. Prater, B. Drake, J. A. Gurley, V. B. Elings, P. K. Hansma: Using force modulation to image surface elasticities with the atomic force microscope, Nanotechnol. 2 (1991) 103–106

    Article  Google Scholar 

  44. D. DeVecchio, B. Bhushan: Localized surface elasticity measurements using an atomic force microscope, Rev. Sci. Instrum. 68 (1997) 4498–4505

    Article  CAS  Google Scholar 

  45. V. Scherer, B. Bhushan, U. Rabe, W. Arnold: Local elasticity and lubrication measurements using atomic force and friction force microscopy at ultrasonic frequencies, IEEE Trans. Mag. 33 (1997) 4077–4079

    Article  CAS  Google Scholar 

  46. H. U. Krotil, T. Stifter, H. Waschipky, K. Weishaupt, S. Hild, O. Marti: Pulse force mode: A new method for the investigation of surface properties, Surf. Interface Anal. 27 (1999) 336–340

    Article  CAS  Google Scholar 

  47. S. Amelio, A. V. Goldade, U. Rabe, V. Scherer, B. Bhushan, W. Arnold: Measurements of elastic properties of ultra-thin diamond-like carbon coatings using atomic force acoustic microscopy, Thin Solid Films 392 (2001) 75–84

    Article  CAS  Google Scholar 

  48. B. Anczykowski, D. Kruger, K. L. Babcock, H. Fuchs: Basic properties of dynamic force microscopy with the scanning force microscope in experiment and simulation, Ultramicroscopy 66 (1996) 251–259

    Article  CAS  Google Scholar 

  49. J. Tamayo, R. Garcia: Deformation, contact time, and phase contrast in tapping mode scanning force microscopy, Longmuir 12 (1996) 4430–4435

    Article  CAS  Google Scholar 

  50. R. Garcia, J. Tamayo, M. Calleja, F. Garcia: Phase contrast in tapping-mode scanning force microscopy, Appl. Phys. A 66 (1998) 309–312

    Article  Google Scholar 

  51. W. W. Scott, B. Bhushan: Use of phase imaging in atomic force microscopy for measurement of viscoelastic contrast in polymer nanocomposites and molecularly-thick lubricant films, Ultramicroscopy 97 (2003) 151–169

    Article  CAS  Google Scholar 

  52. B. Bhushan, J. Qi: Phase contrast imaging of nanocomposites and molecularly- thick lubricant films in magnetic media, Nanotechnol. 14 (2003) 886–895

    Article  CAS  Google Scholar 

  53. V. N. Koinkar, B. Bhushan: Microtribological studies of Al2O3-TiC, polycrystalline and single-crystal Mn-Zn ferrite and SiC head slider materials, Wear 202 (1996) 110–122

    Article  CAS  Google Scholar 

  54. E. Meyer, R. Overney, R. Luthi, D. Brodbeck, L. Howald, J. Frommer, H. J. Guntherodt, O. Wolter, M. Fujihira, T. Takano, Y. Gotoh: Friction force microscopy of mixed Langmuir–Blodgett films, Thin Solid Films 220 (1992) 132–137

    Article  CAS  Google Scholar 

  55. C. D. Frisbie, L. F. Rozsnyai, A. Noy, M. S. Wrighton, C. M. Lieber: Functional group imaging by chemical force microscopy, Science 265 (1994) 2071–2074

    Article  CAS  Google Scholar 

  56. V. N. Koinkar, B. Bhushan: Effect of scan size and surface roughness on microscale friction measurements, J. Appl. Phys. 81 (1997) 2472–2479

    Article  CAS  Google Scholar 

  57. S. Sundararajan, B. Bhushan: Topography-induced contributions to friction forces measured using an atomic force/friction force microscope, J. Appl. Phys. 88 (2000) 4825–4831

    Article  CAS  Google Scholar 

  58. B. Bhushan: Principles and Applications of Tribology (Wiley, New York 1999)

    Google Scholar 

  59. B. Bhushan, G. S. Blackman: Atomic force microscopy of magnetic rigid disks and sliders and its applications to tribology, ASME J. Tribol. 113 (1991) 452–458

    Article  Google Scholar 

  60. M. Reinstaedtler, U. Rabe, V. Scherer, U. Hartmann, A. Goldade, B. Bhushan, W. Arnold: On the nanoscale measurement of friction using atomic-force microscope cantilever torsional resonances, Appl. Phys. Lett. 82 (2003) 2604–2606

    Article  Google Scholar 

  61. T. Stifter, O. Marti, B. Bhushan: Theoretical investigation of the distance dependence of capillary and van der Waals forces in scanning probe microscopy, Phys. Rev. B 62 (2000) 13667–13673

    Article  CAS  Google Scholar 

  62. U. D. Schwarz, O. Zwoerner, P. Koester, R. Wiesendanger: Friction force spectroscopy in the low-load regime with well-defined tips. In: Micro/Nanotribology and Its Applications, ed. by B. Bhushan (Kluwer, Dordrecht 1997) pp. 233–238

    Google Scholar 

  63. B. Bhushan, A. V. Kulkarni: Effect of normal load on microscale friction measurements, Thin Solid Films 278 (1996) 49–56; Errata: 293 333

    Article  CAS  Google Scholar 

  64. V. N. Koinkar, B. Bhushan: Scanning and transmission electron microscopies of single-crystal silicon microworn/machined using atomic force microscopy, J. Mater. Res. 12 (1997) 3219–3224

    Article  CAS  Google Scholar 

  65. X. Zhao, B. Bhushan: Material removal mechanism of single-crystal silicon on nanoscale and at ultralow loads, Wear 223 (1998) 66–78

    Article  CAS  Google Scholar 

  66. B. Bhushan, P. S. Mokashi, T. Ma: A new technique to measure Poisson's ratio of ultrathin polymeric films using atomic force microscopy, Rev. Sci. Instrumen. 74 (2003) 1043–1047

    Article  CAS  Google Scholar 

  67. A. V. Kulkarni, B. Bhushan: Nanoscale mechanical property measurements using modified atomic force microscopy, Thin Solid Films 290-291 (1996) 206–210

    Article  CAS  Google Scholar 

  68. A. V. Kulkarni, B. Bhushan: Nano/picoindentation measurements on single-crystal aluminum using modified atomic force microscopy, Mater. Lett. 29 (1996) 221–227

    Article  CAS  Google Scholar 

  69. A. V. Kulkarni, B. Bhushan: Nanoindentation measurement of amorphous carbon coatings, J. Mater. Res. 12 (1997) 2707–2714

    Article  CAS  Google Scholar 

  70. J. Ruan, B. Bhushan: Nanoindentation studies of fullerene films using atomic force microscopy, J. Mater. Res. 8 (1993) 3019–3022

    Article  CAS  Google Scholar 

  71. N. A. Fleck, G. M. Muller, M. F. Ashby, J. W. Hutchinson: Strain gradient plasticity: Theory and experiment, Acta Metall. Mater. 42 (1994) 475–487

    Article  CAS  Google Scholar 

  72. W. B. Li, J. L. Henshall, R. M. Hooper, K. E. Easterling: The mechanism of indentation creep, Acta Metall. Mater. 39 (1991) 3099–3110

    Article  CAS  Google Scholar 

  73. F. P. Bowden, D. Tabor: The Friction and Lubrication of Solids, Vol. 1 (Clarendon, Oxford 1950)

    Google Scholar 

  74. H. Liu, B. Bhushan: Investigation of the adhesion, friction, and wear properties of biphenyl thiol self-assembled monolayers by atomic force microscopy, J. Vac. Sci. Technol. A 19 (2001) 1234–1240

    Article  CAS  Google Scholar 

  75. H. Liu, B. Bhushan: Investigation of nanotribological properties of self-assembled monolayers with alkyl and biphenyl spacer chains, Ultramicroscopy 91 (2002) 185–202

    Article  CAS  Google Scholar 

  76. B. Bhushan: Self-assembled monolayers for controlling hydrophobicity and/or friction and wear. In: Modern Tribology Handbook, Vol. 2: Materials, Coatings, and Industrial Applications, ed. by B. Bhushan (CRC, Boca Raton 2001) pp. 909–929

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Bhushan, B. (2004). Micro/Nanotribology and Materials Characterization Studies Using Scanning Probe Microscopy. In: Bhushan, B. (eds) Springer Handbook of Nanotechnology. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-29838-X_17

Download citation

  • DOI: https://doi.org/10.1007/3-540-29838-X_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-01218-4

  • Online ISBN: 978-3-540-29838-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics