Skip to main content

Part of the book series: Springer-Lehrbuch ((SLB))

  • 3861 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Zu Kapitel 12: Positionsinformation, Musterbildung, embryonale Induktion

Positionsinformation und epigenetische Erzeugung neuer Muster

  • Day SJ, Lawrence PA (2000) Measuring dimensions:the regulation of size and shape. Development 127:2977–2987

    PubMed  CAS  Google Scholar 

  • Entchev EV, Gonzales-Gaitan MA (2002) Morphogen gradient formation and vesicular trafficking. Traffic 3:98–109

    Article  PubMed  CAS  Google Scholar 

  • Freeman M, Gurdon JB (2002) Regulatory principles of developmental signaling. Annu Rev Cell Dev Biol 18:515–539

    Article  PubMed  CAS  Google Scholar 

  • Greco V et al (2001) Argosomes. A potential vehicle for the spread of morphogens through epithelia. Cell 106:633–645

    Article  PubMed  CAS  Google Scholar 

  • Green J (2002) Morphogen gradients, positional information and Xenopus:interplay of theory and experiment. Dev Dyn 225:392–408

    Article  PubMed  CAS  Google Scholar 

  • Gurdon JB et al (1999) Single cells can sense their position in a morphogen gradient. Development 126:5309–5317

    PubMed  CAS  Google Scholar 

  • Honda H, Mochizuki A (2002) Formation and maintenance of distinctive cell patterns by co-expression of membrane-bound ligands and their receptors. Dev Dyn 223:180–192

    Article  PubMed  CAS  Google Scholar 

  • Irvine KD, Rauskolb C (2001) Boundaries in development: formation and function. Annu Rev Cell Dev Biol 17:189–214

    Article  PubMed  CAS  Google Scholar 

  • Kruse K et al (2004) Dpp gradient formation by dynamin-dependent endocytosis:receptor trafficking and the diffusion model. Development 131:4843–4856

    Article  PubMed  CAS  Google Scholar 

  • Lawrence PA (2001) Morphogens: how big is the big picture? Nature Cell Biol 3:E151–154

    Article  PubMed  CAS  Google Scholar 

  • Malacinski GM, Bryant SV (eds) (1984) Pattern formation. A primer in developmental biology. Macmillan, New York

    Google Scholar 

  • Massague J (2000) How cells read TGF-β signals. Nature Rev Mol Cell Biol 1:169–178

    Article  CAS  Google Scholar 

  • Nüsslein-Volhard C (1994) Die Neubildung von Gestalten bei der Embryogenese von Drosophila. Biol unserer Zeit 24:114–119

    Article  Google Scholar 

  • Osterfield M et al (2003) Graded positional information: interpretation for both fate and guidance. Cell 113:425–428

    Article  PubMed  CAS  Google Scholar 

  • Pages F, Kerridge S (2000) Morphogen gradients. A question of time or concentration? Trends Genetics 16:40–44

    Article  CAS  Google Scholar 

  • Paine-Saunders S et al (2002) Heparan proteoglycans retain Noggin at the cell surface: a potential mechanism for shaping bone morphogenetic proteins gradients. J Biol Chem 277:2089–2096

    Article  PubMed  CAS  Google Scholar 

  • Princivalle M, de-Agostini A (2002) Developmental roles of heparan sulfate proteoglycans:a comparative review in Drosophila, mouse and human. Int J Dev Biol 46:267–278

    PubMed  CAS  Google Scholar 

  • Salazar-Ciudad I et al (2003) Mechanisms of pattern formation in developmental evolution. Development 130:2027–2037

    Article  PubMed  CAS  Google Scholar 

  • Slack JMW (1987) Morphogenetic gradients — past and present. Trends Biochem Sci 12:201–204

    Article  Google Scholar 

  • Tabata T (2001) Genetics of morphogen gradients. Nature Rev Genet 2:620–630

    Article  CAS  PubMed  Google Scholar 

  • Tabata T, Takei Y (2004) Morphogens, their identification and regulation. Development 131:703–712

    Article  PubMed  CAS  Google Scholar 

  • Teleman AA et al (2000) Shaping morphogen gradients. Cell 105:559–562

    Article  Google Scholar 

  • Vincent S, Perrimon N (2001) Developmental biology. Fishing for morphogens. Nature 411:533–536

    Article  PubMed  CAS  Google Scholar 

  • Wolpert L (1969) Positional information and the spatial pattern of cellular differentiation. J Theoret Biol 25:1–47

    CAS  Google Scholar 

  • Wolpert L (1978) Pattern formation in biological development. Sci Am 10:124–137

    Google Scholar 

  • Wolpert L (1989) Positional information revisited. Development (Suppl):3–12

    Google Scholar 

  • Gong Y et al (2004) Planar cell polarity signalling controls cell division orientation during zebrafish gastrulation. Nature 430:689–693

    Article  PubMed  CAS  Google Scholar 

  • Lo Celso C et al (2004) Transient activation of ß-catenin signalling in adult mouse epidermis is sufficient to induce new hair follicles but continuous activation is required to maintain hair follicle tumours. Development 131:1787–1799

    Article  CAS  Google Scholar 

  • Ninomiya H et al (2004) Antero-posterior tissue polarity links mesoderm convergent extension to axial patterning. Nature 430:364–367

    Article  PubMed  CAS  Google Scholar 

  • Pfeiffer S, Vincent JP (1999) Signalling at a distance: transport of Wingless in the embryonic epidermis of Drosophila. Seminars Cell Developmental Biology 10:303–309

    Article  CAS  Google Scholar 

  • Strutt D (2003) Frizzled signalling and cell polarisation in Drosophila and vertebrates. Development 130:4501–4513

    Article  PubMed  CAS  Google Scholar 

Laterale Inhibition und laterale Hilfe,Notch/Delta, Ommatidium: Sevenless

  • Basler K, Hafen E (1989) Ubiquitous expression of sevenless: position-dependent specification of cell fate. Science 243:931–934

    PubMed  CAS  Google Scholar 

  • Beatus P, Lendahl U (1998) Notch and neurogenesis. J Neurosci Res 54:125–136

    Article  PubMed  CAS  Google Scholar 

  • Dominguez M, Hafen E (1996) Genetic dissection of cell fate specification in the developing eye of Drosophila. Cell Dev Biol 7:219–226

    Article  Google Scholar 

  • Hafen E et al (1987) Sevenless, a cell-specific homeotic gene of Drosophila, encodes a putative transmembrane receptor with a tyrosine kinase domain. Science 236:55–63

    PubMed  CAS  Google Scholar 

  • Lai EC (2004) Notch signaling: control of cell communication and cell fate. Development 131:965–973

    Article  PubMed  CAS  Google Scholar 

Morphogene, Embryonale Induktion, Induktoren

  • Anderson KV (1998) Pinning down positional information: dorsal-ventral polarity in the Drosophila embryo. Cell 95:439–442

    Article  PubMed  CAS  Google Scholar 

  • Basler K, Struhl G (1994) Compartment boundaries and the control of Drosophila limb pattern by hedgehog protein. Nature 368:208–214

    Article  PubMed  CAS  Google Scholar 

  • Entchev EV et al (2000) Gradient formation of the TGF-ß homolog Dpp. Cell 103:981–991

    Article  PubMed  CAS  Google Scholar 

  • Ephrussi A, St-Johnston D (2004) Seeing is believing: the bicoid morphogen gradient matures. Cell 116:143-152

    Google Scholar 

  • Houchmandzadeh B, Wieschaus E, Leibler S (2002) Establishment of developmental precision and proportions in the early Drosophila embryo. Nature 415:798–802

    PubMed  CAS  Google Scholar 

  • Jaeger J et al (2004) Dynamic control of positional information in the early Drosophila embryo. Nature 430:368–371

    Article  PubMed  CAS  Google Scholar 

  • Nüsslein-Volhard C (1991) From egg to organism — studies on embryonic pattern formation. JAMA 266:1848–1849

    Article  PubMed  Google Scholar 

  • Nüsslein-Volhard C (1994) Die Neubildung von Gestalten bei der Embryogenese von Drosophila. Biol unserer Zeit 24:114–119

    Article  Google Scholar 

  • Rivera-Pomar R, Jäckle H (1996) From gradients to stripes in Drosophila embryogenesis: filling the gaps. Trends Genet 12:478–483

    Article  PubMed  CAS  Google Scholar 

  • Rusch J, Levine M (1996) Threshold responses to the dorsal regulatory gradient and the subdivision of primary tissue territories in the Drosophila embryo. Curr Opinion Genet Dev 6:416–423

    Article  CAS  Google Scholar 

  • Slack JMW (1987) Morphogenetic gradients — past and present. Trends Biochem Sci 12:201–204

    Article  Google Scholar 

  • Strigini M, Cohen SM (1999) Formation of morphogen gradients in the Drosophila wing. Semin Cell Devl Biol 10:335–344

    Article  CAS  Google Scholar 

  • Strigini M, Cohen SM (2000) Wingless gradient formation in the Drosophila wing. Curr Biol 10:293–300

    Article  PubMed  CAS  Google Scholar 

  • Tabata T, Takei Y (2004) Morphogens, their identification and regulation. Development 131:703–712

    Article  PubMed  CAS  Google Scholar 

  • Ueno N, Ohkawara B (2003) Regulation of pattern formation by the interaction between growth factors and proteoglycans. In: Sekimara T et al (eds) Morphogenesis and pattern formation in biological systems, 69–82. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Agius E et al (2000) Endodermal Nodal-related signals and mesoderm induction in Xenopus. Development 127:1173–1183

    PubMed  CAS  Google Scholar 

  • Altaba AR (1998) Deconstructing the organizer. Nature 391:748–749

    Article  CAS  Google Scholar 

  • Ariizumi T et al (2000) Bioassays of inductive interactions in amphibian development. In: Tuan RS, Lo CW (eds) Development biology protocols, Vol I, Humana Press, Totowa, NJ, pp 89–112

    Google Scholar 

  • Baker JC et al (1999) Wnt signaling in Xenopus embryos inhibits bmp4 expression and activates neural development. Genes and Development 13:3149–3159

    Article  PubMed  CAS  Google Scholar 

  • Barth KA et al (1999) Bmp activity establishes a gradient of positional information throughout the entire neural plate. Development 126:4977–4987

    PubMed  CAS  Google Scholar 

  • Beddington RS (1994) Induction of a second neural axis by the mouse node. Development 120:613–620

    PubMed  CAS  Google Scholar 

  • Beddington RSP, Robertson EJ (1999) Axis development and early asymmetry in mammals. Cell 96:195–209

    Article  PubMed  CAS  Google Scholar 

  • Bier E (1997) Anti-neural inhibition: a conserved mechanism for neural induction. Cell 89:681–684

    Article  PubMed  CAS  Google Scholar 

  • Blumberg B et al (1997) An essential role for retinoid signaling in anteroposterior neural patterning. Development 124:373–379

    PubMed  CAS  Google Scholar 

  • Boettger T et al (2001) The avian organizer. Int J Dev Biol 45:281–287

    PubMed  CAS  Google Scholar 

  • Bouwmeester T et al (1996) Cerberus is a head-inducing secreted factor expressed in the anterior endoderm of Spemann’s organizer. Nature 382:595–597

    Article  PubMed  CAS  Google Scholar 

  • Brenman J et al (2001) Nodal signalling in the epiblast patterns the early mouse embryo. Nature 411:965–968

    Article  Google Scholar 

  • Carnac G et al (1996) The homeobox gene Siamois is a target of the Wnt dorsalisation pathway and triggers organizer activity in the absence of mesoderm. Development 122:3055–3056

    PubMed  CAS  Google Scholar 

  • Chen Y, Schier AF (2001) The zebrafish Nodal signal squint functions as a morphogen. Nature 411:533–536

    Article  CAS  Google Scholar 

  • Christian JL (2000) BMP, Wnt and Hedgehog signals: how far can they go? Curr Opin Cell Biol 12:244–249

    Article  PubMed  CAS  Google Scholar 

  • Dale L, Wardle FC (1999) A gradient in BMP activity specifies dorsal-ventral fates in early Xenopus embryos. Semin Cell Dev Biol 10:319–326

    Article  PubMed  CAS  Google Scholar 

  • DeRobertis EM et al (2000) The establishment of Spemann’s organizer and patterning of the vertebrate embryo. Nature Rev Genet 3:171–181

    Article  CAS  Google Scholar 

  • Dosch R et al (1997) BMP-4 acts as a morphogen in dorsoventral mesoderm patterning in Xenopus. Development 124:2325–2334

    PubMed  CAS  Google Scholar 

  • Dosch R, Niehrs C (2000) Requirement for anti-dorsalizing morphogenetic protein in organizer patterning. Mech Dev 90:195–203

    Article  PubMed  CAS  Google Scholar 

  • Fleming A et al (2004) A central role for the notochord in vertebral patterning. Development 131:873–880

    Article  PubMed  CAS  Google Scholar 

  • Gamse J, Sive H (2000) Vertebrate anteroposterior patterning: the Xenopus neurectoderm as a paradigm. Bioessays 22:976–986

    Article  PubMed  CAS  Google Scholar 

  • Glinka A et al (1998) Dickkopf-1 is a member of a new family of secreted proteins and functions in head induction. Nature 391:357–362

    Article  PubMed  CAS  Google Scholar 

  • Green JBA (1994) Roads to neuralness: embryonic neural induction as derepression of a default state. Cell 77:317–330

    Article  PubMed  CAS  Google Scholar 

  • Gritsman K et al (2000) Nodal signaling patterns the organizer. Development 127:921–932

    PubMed  CAS  Google Scholar 

  • Grunz H (1996) Factors responsible for the establishment of the body plan in the amphibian embryo. Int J Dev Biol 40:279–289

    PubMed  CAS  Google Scholar 

  • Grunz H (1997) Neural induction in amphibians. Curr Top Dev Biol 35:191–228

    PubMed  CAS  Google Scholar 

  • Grunz H (1999) Gene expression and pattern formation during early embryonic development in amphibians. J Biosciences 24:515–528

    Article  CAS  Google Scholar 

  • Harland RM (2000) Neural induction. Curr Opin Genet Dev 10:357–362

    Article  PubMed  CAS  Google Scholar 

  • Hogan BLM (1996) Bone morphogenetic proteins in development. Curr Opin Genet Dev 6:432–438

    Article  PubMed  CAS  Google Scholar 

  • Hoppler S et al (1998) BMP-2/4 and WNT-8 cooperatively pattern the Xenopus mesoderm. Mech Dev 71:119–129

    Article  PubMed  CAS  Google Scholar 

  • Kelly OG, Melton DA (1995) Induction and patterning of the vertebrate nervous system. Trends Genet 11(7):273–278

    Article  PubMed  CAS  Google Scholar 

  • Kessel M, Pera E (1998) Unexpected requirements for neural induction in the avian embryo. Trends Genet 14:169–171

    Article  PubMed  CAS  Google Scholar 

  • Kerszberg M (1999) Morphogen propagation and action: toward molecular models. Sem Cell Dev Biol 10:297–302

    Article  CAS  Google Scholar 

  • Lemaire P, Yasuo H (1998) Developmental signalling: a careful balancing act. Curr Biol 8:R228–R231

    Article  PubMed  CAS  Google Scholar 

  • Marques G et al (1997) Production of a DPP activity gradient in the early Drosophila embryo through the opposing actions of the SOG and TLD proteins. Cell 91:417–426

    Article  PubMed  CAS  Google Scholar 

  • Mathieu J et al (2004) Nodal and FGF pathways interact through a positive regulatory loop and synergize to maintain mesodermal cell populations. Development 131:629–641

    Article  PubMed  CAS  Google Scholar 

  • McDowell N, Gurdon JB (1999) Activin as a morphogen in Xenopus mesoderm induction. Semin Cell Dev Biol 10:311–317

    Article  PubMed  CAS  Google Scholar 

  • Medina A, Wendler SR, Steinbeisser H (1997) Cortical rotation is required for the correct spatial expression of sia and gsc in Xenopus embryos.Int J Dev Biol 41:741–745

    PubMed  CAS  Google Scholar 

  • Mullins M (1998) Holy Tolloido: Tolloid cleaves SOG/chordin to free DPP/BMPs. Trends Genet 14:127–129

    Article  PubMed  CAS  Google Scholar 

  • Munoz-Sanjuan I, H.-Brivanlou A (2001) Early posterior/ventral specification in the vertebrate embryo. Dev Biol 237:1–7

    Article  PubMed  CAS  Google Scholar 

  • Niehrs C (1999) Head in the WNT, the molecular nature of Spemann’s head organizer. Trends in Genetics 15(8):314–319

    Article  PubMed  CAS  Google Scholar 

  • Niehrs C (2004) Regionally specific induction by the Spemann-Mangold organizer. Nature Rev Genetics 5:425–434

    Article  CAS  Google Scholar 

  • Nusse R (2001) Making head or tail of Dickkopf. Nature 411:255–256

    Article  PubMed  CAS  Google Scholar 

  • Paine-Saunders S et al (2002) Heparan proteoglycans retain Noggin at the cell surface: a potential mechanism for shaping bone morphogenetic proteins gradients. J Biol Chem 277:2089–2096

    Article  PubMed  CAS  Google Scholar 

  • Penzel R et al (1997) Characterization and early embryonic expression of a neural specific transcription factor xSOX3 in Xenopus laevis. Int J Dev Biol 41:667–677

    PubMed  CAS  Google Scholar 

  • Piccolo S et al (1997) Dorsoventral patterning in Xenopus: inhibition of ventral signals by direct binding of chordin to BMP-4. Cell 86:589–598

    Article  Google Scholar 

  • Piccolo S et al (1997) Cleavage of chordin by Xolloid metalloprotease suggests a role for proteolytic processing in the regulation of Spemann organizer activity. Cell 91:407–416

    Article  PubMed  CAS  Google Scholar 

  • Piccolo S et al (1999) The head inducer Cerberus is a multifunctional antagonist of Nodal, BMP and Wnt signals. Nature 397:707–710

    Article  PubMed  CAS  Google Scholar 

  • Sasai Y et al (1994) Xenopus chordin: a novel dorsalizing factor activated by organizer-specific homeobox genes. Cell 79:779–790

    Article  PubMed  CAS  Google Scholar 

  • Sasai Y et al (1995) Regulation of neural induction by the Chd and Bmp-4 antagonistic patterning signal in Xenopus. Nature 376:333

    Article  PubMed  CAS  Google Scholar 

  • Schier AF, Shen MM (2000) Nodal signalling in vertebrate development. Nature 403:385–389

    Article  PubMed  CAS  Google Scholar 

  • Spemann H (1936) Experimentelle Beiträge zu einer Theorie der Entwicklung. Springer, Berlin Heidelberg New York Tokyo (Nachdruck 1968)

    Google Scholar 

  • Spemann H (1938) Embryonic development and induction. Yale Univ Press, New Haven/CT (reprinted by Hafner, New York, 1962)

    Google Scholar 

  • Streit A et al (1998) Chordin regulates primitive streak development and the stability of induced neural cells, but is not sufficient for neural induction in the chick embryo. Development 125:507–519

    PubMed  CAS  Google Scholar 

  • Tabata T, Takei Y (2004) Morphogens, their identification and regulation. Development 131:703–712

    Article  PubMed  CAS  Google Scholar 

  • Tonegawa A et al (1997) Mesodermal subdivision along the mediolateral axis in chicken controlled by different concentrations of BMP-4. Development 124:1975–1984

    PubMed  CAS  Google Scholar 

  • Watabe T et al (1995) Molecular mechanisms of Spemann’s organizer formation:conserved growth factor synergy between Xenopus and mouse. Genes Dev 9:3038–3050

    PubMed  CAS  Google Scholar 

  • Weinstein DC, Hemmati-Brivanlou A (1999) Neural induction. Ann Rev Cell Dev Biol 1999:15411–15433

    Google Scholar 

  • Wilson SI et al (2001) The status of Wnt signalling regulates neutral and epidermal fates in the chick embryo. Nature 411:325–330

    Article  PubMed  CAS  Google Scholar 

  • Wylie C et al (1996) Maternal β-catenin establishes a dorsal signal in early Xenopus embryos. Development 122:2987–2996

    PubMed  CAS  Google Scholar 

  • Zoltewicz JS, Gerhart JC (1997) The Spemann organizer of Xenopus is patterned along its anteroposterior axis at the earliest gastrula stage. Dev Biol 192:482–491

    Article  PubMed  CAS  Google Scholar 

  • Zorn A (1997) Cell-cell signalling: frog frizbees. Curr Biol 7:R501–R504

    Article  PubMed  CAS  Google Scholar 

  • Grainger RM, Henry JJ, Henderson RA (1988) Reinvestigation of the role of optic vesicle in embryonic lens induction. Development 102:517–526

    PubMed  CAS  Google Scholar 

  • Harrison RG (1920) Experiments on the lens in Ambystoma. Proc Soc Exp Biol Med 17:413–461

    Google Scholar 

  • Henry JJ, Grainger RM (1990) Early tissue interactions leading to embryonic lens formation in Xenopus laevis. Dev Biol 141:149–163

    Article  PubMed  CAS  Google Scholar 

  • Lang RA (2004) Pathways regulating lens induction in the mouse, Int J Dev Biol 48:783–791

    Article  PubMed  CAS  Google Scholar 

  • Ogino H, Yasuda K (1998) Induction of lens differentiation by activation of a bZIP transcription factor. Science 280:115–118

    Article  PubMed  CAS  Google Scholar 

  • Spemann H (1968) Experimentelle Beiträge zu einer Theorie der Entwicklung. Springer, Berlin Heidelberg New York Tokyo. Nachdruck

    Google Scholar 

  • Basler K, Struhl G (1994) Compartment boundaries and the control of Drosophila limb pattern by hedgehog protein. Nature 368:208–214

    Article  PubMed  CAS  Google Scholar 

  • Borycki A-G, Mendham L, Emerson CP (1998) Control of somite patterning by sonic hedgehog and its downstream signal response genes. Development 125:777–790

    PubMed  CAS  Google Scholar 

  • Briscoe J, Ericson J (1999) The specification of neuronal identity by graded sonic hedgehog signalling. Sem Cell Dev Biol 10:353–352

    Article  CAS  Google Scholar 

  • Bumcrot DA, Takada R, McMahon AP (1995) Proteolytic processing yields two secreted forms of sonic hedgehog. Mol Cell Biol 15:2294–2303

    PubMed  CAS  Google Scholar 

  • Chiang C et al (1996) Cyclopia and defect axial patterning in mice lacking Sonic hedgehog gene function. Nature 383:407–413

    Article  PubMed  CAS  Google Scholar 

  • Chuang PT, McMahon AP (1999) Vertebrate Hedgehog signalling modulatd by induction of a Hedgehog-binding protein. Nature 397:617–621

    Article  PubMed  CAS  Google Scholar 

  • Dupe V, Lumsden A (2001) Hindbrain patterning involves graded responses to retinoic acid signalling. Development 128:2199–2208

    PubMed  CAS  Google Scholar 

  • Durston AJ et al (1998) Retinoic acid causes an anteroposterior transformation in the developing central nervous system. Nature 340:140–144

    Article  Google Scholar 

  • Felsenfeld AL, Kennison JA (1995) Positional signaling by hedgehog in Drosophila imaginal discs. Development 121:1–10

    PubMed  CAS  Google Scholar 

  • Goodrich LV et al (1996) Conservation of the hedgehog/patched signaling pathway from flies to mice:induction of a mouse patched gene by Hedgehog. Genes Dev 10:301–312

    PubMed  CAS  Google Scholar 

  • Hammerschmidt M, Brook A, MacMahon AP (1997) The world according to hedgehog. Trends Genet 13:14–21

    Article  PubMed  CAS  Google Scholar 

  • Ingham PW (1995) Signalling by hedgehog family proteins in Drosophila and vertebrate development. Curr Biol 5:492–498

    Article  CAS  Google Scholar 

  • Lee JJ et al (1994) Autoproteolysis in hedgehog protein biogenesis. Science 266:1528–1530

    PubMed  CAS  Google Scholar 

  • Litingtung Y, Chiang C (2000) Control of Shh activity and signaling activity in the neural tube. Dev Dynamic 219:143–154

    Article  CAS  Google Scholar 

  • McCaffrey P, Dragger UC (2000) Regulation of retinoic acid signaling in the embryonic nervous system:a master differentiation factor. Cytokine Growth Factor Rev 11:233–249

    Article  Google Scholar 

  • Murone M et al. (1999) Hedgehog signal transduction: from flies to vertebrates. Exp Cell Res 253:25–33

    Article  PubMed  CAS  Google Scholar 

  • Ogura T et al (1996) Evidence that Shh cooperates with a retinoic acid inducible co-factor to establish ZPA-like activity. Development 122:537–542

    PubMed  CAS  Google Scholar 

  • Patten I, Placzek M (2000) The role of sonic hedgehog in neural tube patterning. Cellular and Molecular Life Sciences 57:1695–1708

    Article  PubMed  CAS  Google Scholar 

  • Perrimon N (1995) Hedgehog and beyond. Cell 80:517–520

    Article  PubMed  CAS  Google Scholar 

  • Teilet MA et al (1998) Sonic hedgehog is required for survival of both myogenic and chondrogenic somit lineages. Development 125:2019–2030

    Google Scholar 

  • Torroja C et al (2004) Patched controls the Hedgehog gradient by endocytosis in a dynamindependent manner, but this internalization does not play a major role in signal transduction Development 2004 131:2395–2408

    Article  PubMed  CAS  Google Scholar 

  • Wolpert L, Brown NA (1995) Hedgehog keeps to the left. Nature 377:103–104

    Article  PubMed  CAS  Google Scholar 

  • Zeng X et al (2001) A freely diffusible form of Sonic hedghog mediates long-range signalling. Nature 411:716–720

    Article  PubMed  CAS  Google Scholar 

  • Bryant SV, Gardiner DM (1992) Retinoic acid, local cell-cell interactions, and pattern formation in vertebrate limbs. Dev Biol 52:1–25

    Article  Google Scholar 

  • Chen YP, Huang L, Solursh M (1994) A concentration gradient of retinoids in the early Xenopus embryo. Dev Biol 161:70–76

    Article  PubMed  Google Scholar 

  • Eichele G (1989) Retinoic acid induces a pattern of digits in anterior half wing buds that lack the zone of polarizing activity. Development 107:863–867

    PubMed  CAS  Google Scholar 

  • Gavalas A, Krumlauf R (2000) Retinoid signalling and hindbrain patterning. Curr Opin Genet Dev 10:380–386

    Article  PubMed  CAS  Google Scholar 

  • Hollemann T et al (1998) Regionalized metabolic activity establishes boundaries of retinoic acid signalling. EMBO J 17:7361–7372

    Article  PubMed  CAS  Google Scholar 

  • Kastner P et al (1997) Genetic evidence that the retinoid signal is transduced by heterodimeric RXR/RAR functional units during mouse development. Development 124:313–326

    PubMed  CAS  Google Scholar 

  • Maden M, Hind M (2003) Retinoic acid, a regeneration-inducing molecule. Dev Dyn 226:237–244

    Article  PubMed  CAS  Google Scholar 

  • Morris-Kay GM, Ward SJ (1999) Retinoids and mammalian development. Int Rev Cytol 1999:18873–18931

    Google Scholar 

  • Ogura T et al (1996) Evidence that Shh cooperates with a retinoic acid inducible co-factor to establish ZPA-like activity. Development 122:537–542

    PubMed  CAS  Google Scholar 

  • Shimeld SM (1996) Retinoic acid, HOX genes and the anterior-posterior axis in chordates. Bioessays 18:613–615

    Article  CAS  Google Scholar 

  • Smith SM et al (1998) Retinoids and their receptors in vertebrate embryogenesis. J Nutrition 128:467S–470S

    CAS  Google Scholar 

  • Wendling O et al (2001) Roles of retinoic acid receptors in early embryonic morphogenesis and hindbrain patterning. Development 128:2031–2038

    PubMed  CAS  Google Scholar 

  • Wessely O et al (2001) Neural induction in the absence of mesoderm: β-catenin-dependent expression of secreted BMP antagonists at the blastula stage in Xenopus. Dev Biol 234:161–173

    Article  PubMed  CAS  Google Scholar 

  • Zile MH (1998) Vitamin A and embryonic development: an overview. J Nutrition 128:455S–458S

    CAS  Google Scholar 

Links-rechts-Asymmetrien

  • Burdine RD, Schier AF (2000) Conserved and divergent mechanisms in left-right axis formation. Genes Dev 14:763–776

    PubMed  CAS  Google Scholar 

  • Capdevila J et al (2000) Mechanisms of left-right determination in vertebrates. Cell 101:9–21

    Article  PubMed  CAS  Google Scholar 

  • Esser JJ et al (2002) Conserved function for embryonic nodal cilia. Nature 418:37–38

    Article  CAS  Google Scholar 

  • Fujinaga M (1997) Development of sidedness of asymmetric body structures in vertebrates. Int J Dev Biol 41:153–186

    PubMed  CAS  Google Scholar 

  • Harvey RP (1998) Links in the left/right axial pathway. Cell 94:273–276

    Article  PubMed  CAS  Google Scholar 

  • Hyatt BA, Yost HJ (1998) The left-right coordinator: the role of Vgl in organizing left-right axis formation. Cell 93:37–46

    Article  PubMed  CAS  Google Scholar 

  • Levin M (1998) Left-right asymmetry and the chick embryo. Sem Cell Dev Biol 9:67–76

    Article  CAS  Google Scholar 

  • Levin M, Mercola M (1998) Gap junctions are involved in the early generation of left-right asymmetry. Dev Biol 203:90–105

    Article  PubMed  CAS  Google Scholar 

  • Logan M et al (1998) The transcription factor Pitx2 mediates situs-specific morphogenesis in response to left-right asymmetric signals. Cell 94:307–317

    Article  PubMed  CAS  Google Scholar 

  • Meno C et al (1998) Lefty-1 is required for left-right determination as a regulator of lefty-2 and nodal. Cell 94:287–297

    Article  PubMed  CAS  Google Scholar 

  • Nonaka S (2002) Determination of left-right patterning of the mouse embryo by artificial nodal flow. Nature 418:96–99

    Article  PubMed  CAS  Google Scholar 

  • Pagan-Westphal SM, Tabin CJ (1998) The transfer of left-right positional information during chick embryogenesis. Cell 93:25–35

    Article  PubMed  CAS  Google Scholar 

  • Piedra ME et al (1998) Pitx2 participates in the late phase of the pathway controlling left-right asymmetry. Cell 94:319–324

    Article  PubMed  CAS  Google Scholar 

  • Ryan AK et al (1998) Pitx2 determines left-right asymmetry of internal organs in vertebrates. Nature 394:545–551

    Article  PubMed  CAS  Google Scholar 

  • Supp MS et al (2000) Molecular motors: the driving force behind mammalian left-right development. Trends Cell Biol 10:4145

    Article  Google Scholar 

  • Tamura K et al (1999) Molecular basis of left-right asymmetry. Dev Growth Differ 41:645–656

    Article  PubMed  CAS  Google Scholar 

  • Taulman PD et al (2001) Polaris, a protein involved in left-right axis patterning, localizes to basal bodies and cilia. Molecular Biology of the Cell 12:589–599

    PubMed  CAS  Google Scholar 

  • Yamamoto M (2003) Nodal signalling in LR asymmetry. Development 130:e902–e903

    Article  CAS  Google Scholar 

  • Yost MJ (1995) Vertebrate left-right development. Cell 82:689–692

    Article  PubMed  CAS  Google Scholar 

  • Watanabe D et al (2003) The left-right determinant Inversin is a component of node and other 9+0 cilia. Development 130:1725–1734

    Article  PubMed  CAS  Google Scholar 

  • Wolpert L, Brown NA (1995) Hedgehog keeps to the left. Nature 377:103–104

    Article  PubMed  CAS  Google Scholar 

Morphogenetische Felder: Insektenextremitäten

  • Basler K, Struhl G (1994) Compartment boundaries and the control of Drosophila limb pattern by hedgehog protein. Nature 368:208–214

    Article  PubMed  CAS  Google Scholar 

  • Campbell G, Tomlinson A (1998) The roles of the homeobox genes aristaless and Distal-less in patterning the legs and wings of Drosophila. Development 125:4483–4493

    PubMed  CAS  Google Scholar 

  • Cummins M et al (2003) Comparative analysis of leg and antenna development in wild-type and homeotic Drosophila melanogaster. Dev Genes Evol 213:319–327

    Article  PubMed  Google Scholar 

  • Kojima T (2004) The mechanism of Drosophila leg development along the proximodistal axis. Dev Growth Diff 46:115–129

    Article  CAS  Google Scholar 

  • Lecuit T, Cohen SM (1997) Proximal-distal axis formation in the Drosophila leg. Nature 388:139–145

    Article  PubMed  CAS  Google Scholar 

  • Weihe U et al (2004) Proximodistal subdivision of Drosophila legs and wings: the elbow-no ocelli gene complex. Development 131:767–774

    Article  PubMed  CAS  Google Scholar 

Morphogenetische Felder: Wirbeltierextremitäten

  • Bryant SV, Gardiner DM (1992) Retinoic acid, local cell-cell interactions, and pattern formation in vertebrate limbs. Dev Biol 152:1–25

    Article  PubMed  CAS  Google Scholar 

  • Chen YP et al (1996) Hensen’s node from vitamin A-deficient quail embryo induces chick limb bud duplication and retains its normal asymmetric expression of Sonic hedgehog (shh). Dev Biol 173:256–264

    Article  PubMed  CAS  Google Scholar 

  • Cohn MJ, Tickle C (1996) Limbs: a model for pattern formation within the vertebrate body plan. Trends Genet 12:253–257

    Article  PubMed  CAS  Google Scholar 

  • Crossley PH et al (1996) Roles of FGF8 in the induction, initiation, and maintainance of chick limb development. Cell 84:127–136

    Article  PubMed  CAS  Google Scholar 

  • Duboule D (1994) How to make a limb? Science 266:575–576

    PubMed  CAS  Google Scholar 

  • Dudley AT, Ros MA, Tabin CJ (2002) A re-examination of proximodistal patterning during limb development. Nature 418:539–544

    Article  PubMed  CAS  Google Scholar 

  • Duprez DM et al (1996) Activation of Fgf-4 and HoxD genes expression by BMP-2 expressing cells in the developing chick. Development 122:1821–1828

    PubMed  CAS  Google Scholar 

  • Eichele G (1989) Retinoic acid induces a pattern of digits in anterior half wing buds that lack the zone of polarizing activity. Development 107:863–867

    PubMed  CAS  Google Scholar 

  • Francis PH et al (1994) Bone morphogenetic proteins and a signalling pathway that controls patterning in the developing chick limb. Development 120:209–218

    PubMed  CAS  Google Scholar 

  • Goff D, Gabin C (1997) Analysis of Hoxd-13 and Hoxd-11 misexpression in chick limb buds reveals that Hox genes affect both bone condensation and growth. Development 124:627–636

    PubMed  CAS  Google Scholar 

  • Helms JA, Kim CH, Eichele G, Thaller C (1996) Retinoic acid signalling is required during early chick limb development. Development 122:1385–1394

    PubMed  CAS  Google Scholar 

  • Hornbruch A, Wolpert L (1986) Positional signalling by Hensen’s node when grafted to the chick limb bud. J Embryol Exp Morphol 94:257–265

    PubMed  CAS  Google Scholar 

  • Hornbruch A, Wolpert L (1991) The spatial and temporal distribution of polarizing activity in the flank of the pre-limb-bud stages in the chick embryo. Development 111:725–731

    PubMed  CAS  Google Scholar 

  • Maden M (2002) Positional information: knowing where you are in a limb. Curr Biol 12:R773–775

    Article  PubMed  CAS  Google Scholar 

  • Maden M, Ong DE, Summerbell D, Chytil F, Hirst EA (1989) Cellular retinoic acid-binding protein and the role of retinoic acid in the development of the chick embryo. Dev Biol 135:124–132

    Article  PubMed  CAS  Google Scholar 

  • Masuya H et al (1997) Multigenic control of the localization of the zone of polarizing activity in limb morphogenesis in the mouse. Dev Biol 182:42–51

    Article  PubMed  CAS  Google Scholar 

  • Nelson CE et al (1996) Analysis of Hox Gene expression in the chick limb bud. Development 122:1449–1466

    PubMed  CAS  Google Scholar 

  • Ogura T et al (1996) Evidence that Shh cooperates with a retinoic acid inducible co-factor to establish ZPA-like activity. Development 122:537–542

    PubMed  CAS  Google Scholar 

  • Ohuchi H et al (1997) The mesenchymal factor, FGF10, initiates and maintains the outgrowth of the chick limb bud through interaction with FGF8, an apical ectodermal factor. Development 124:2235–2244

    PubMed  CAS  Google Scholar 

  • Riddle RD, Johnson RL, Laufer E, Tabin C (1993) Sonic hedgehog mediates the polarizing activity of the ZPA. Cell 75:1401–1416

    Article  PubMed  CAS  Google Scholar 

  • Schwabe JWR, Rodriguez-Esteban C, Izpisua Belmonte JC (1998) Limbs are going: where are they going? Trends Genet 14:229–235

    Article  PubMed  CAS  Google Scholar 

  • Tabin CJ (1995) The initiation of the limb bud: growth factors, hox genes, and retinoids. Cell 80:671–674

    Article  PubMed  CAS  Google Scholar 

  • Thaller C, Eichele G (1987) Identification and spatial distribution of retinoids in the developing chick limb bud. Nature 327:625–628

    Article  PubMed  CAS  Google Scholar 

  • Tanaka M et al (1997) Induction of additional limb at the dorsal-ventral boundary of a chick embryo. Dev Biol 182:191–203

    Article  PubMed  CAS  Google Scholar 

  • Vargesson N et al (1997) Cell fate in the chick limb bud and relationship to gene expression. Development 124:1909–1918

    PubMed  CAS  Google Scholar 

  • Vogel A, Rodriguez C, Izpisua-Belmonte JC (1996) Involvement of FGF-8 in initiation, outgrowth and patterning of the vertebrate limb. Development 122:1737–1750

    PubMed  CAS  Google Scholar 

  • Wolpert L (2002) Positional information in vertebrate limb development; an interview with Lewis Wolpert by Cheryll Tickle. Int J Dev Biol 46:863–867

    PubMed  Google Scholar 

  • Wolpert L (2002) The progress zone model for specifying positional information. Int J Dev Biol 46:869–870

    PubMed  Google Scholar 

Musterkontrolle und Positionsgedächtnis bei Hydra

  • Berking S (1998) Hydrozoa metamorphosis and pattern formation. Curr Top Dev Biol 38:81–131

    Article  PubMed  CAS  Google Scholar 

  • Berking S (2003) A model of budding in hydra; pattern formation in concentric rings. J Theor Biol 222:37–52

    Article  PubMed  Google Scholar 

  • Bode PM, Bode HR (1984) Patterning in Hydra. In: Malacinski GM, Bryant SV (eds) Pattern formation, vol I. Macmillan, New York, pp 213–241

    Google Scholar 

  • Bosch TCG (1998) Hydra. In:Feretti P (ed) Cellular and molecular basis of regeneration from invertebrates to humans. Wiley, Weinheim 1998, pp 111–134

    Google Scholar 

  • Bosch TC (2003) Ancient signals:peptides and the interpretation of positional in ancestral metazoans. Comp Biochem Physiol B Biochem Mol Biol 136:185–196

    Article  PubMed  CAS  Google Scholar 

  • Gierer A et al (1972) Regeneration of hydra from reaggregated cells. Nature New Biol 239:98–101

    Article  PubMed  CAS  Google Scholar 

  • Hassel M (1998) Upregulation of Hydra vulgaris cPKC gene is tightly coupled to the differentiation of head structures. Dev Genes Evol 207:489–501

    Article  PubMed  CAS  Google Scholar 

  • Hassel M, Bieller A (1996) Stepwise transfer from high to low lithium concentrations increases the head-forming potential in Hydra vulgaris and possibly activates the PI cycle. Dev Biol 177:439–448

    Article  PubMed  CAS  Google Scholar 

  • Hassel M et al (1998) The level of expression of a protein kinase C gene may be an important component of the patterning process in Hydra. Dev Genes Evol 207:502–514

    Article  PubMed  CAS  Google Scholar 

  • Meinhardt H (1993) A model for pattern formation of hypostome, tentacles, and foot in Hydra: how to form structures close to each other, how to form them at a distance. Dev Biol 157:321–333

    Article  PubMed  CAS  Google Scholar 

  • Müller WA (1989) Diacylglycerol-induced multihead formation in Hydra. Development 105:306–316

    Google Scholar 

  • Müller WA (1990) Ectopic head formation in Hydra: diacylglycerol-induced increase in positional value and assistance of the head in foot formation. Differentiation 42:131–143

    PubMed  Google Scholar 

  • Müller WA (1995) Competition for factors and cellular resources as a principle of pattern formation in Hydra. Dev Biol 167:159–174 (Part I), 75-189 (Part II)

    Article  PubMed  Google Scholar 

  • Müller WA (1996) Pattern formation in the immortal Hydra. Trends Genet 11:91–96

    Article  Google Scholar 

  • Müller WA (1996) Head formation at the basal end and mirror-image pattern duplication in Hydra vulgaris. Int J Dev Biol 40:1119–1131

    PubMed  Google Scholar 

  • Müller WA (1996) Competition-based head versus foot decision in chimeric hydras. Int J Dev Biol 40:1133–1139

    PubMed  Google Scholar 

  • Sherratt JA et al (1995) A receptor based model for pattern formation in Hydra. Forma 10:77–95

    Google Scholar 

  • Sudhop S et al (2004) Signalling by the FGF-R-like tyrosine kinase, Kringelchen, is essential for bud detachment in Hydra vulgaris. Development 131:4001–4011

    Article  PubMed  CAS  Google Scholar 

Interkalation

  • Bohn H (1976) Regeneration of proximal tissues from a more distal amputation level in the insect leg (Blaberus craniifer, Blattaria). Dev Biol 53:285–293

    Article  PubMed  CAS  Google Scholar 

  • Maden M (1980) Intercalary regeneration in the amphibian limb and the rule of distal transformation. J Embryol Exp Morphol 56:201–209

    PubMed  CAS  Google Scholar 

  • Müller WA (1982) Intercalation and pattern regulation in hydroids. Differentiation 22:141–150

    Google Scholar 

Periodische Muster

  • Aulehla A, Herrmann BG (2004) Segmentation in vertebrates: clock and gradient finally joined. Genes Dev 18:2060–2067

    Article  PubMed  CAS  Google Scholar 

  • Cooke J (1998) A gene that resuscitates a theory — somitogenesis and a molecular oscillator. Trends Genet 14:85–88

    Article  PubMed  CAS  Google Scholar 

  • Cordes R et al (2004) Specification of vertebral identity is coupled to Notch signalling and the segmentation clock. Development 131:1221–1233

    Article  PubMed  CAS  Google Scholar 

  • Crowe R et al (1998) A new role for Notch and Delta in cell fate decision: patterning the feather array. Development 125:767–775

    PubMed  CAS  Google Scholar 

  • Jiang T et al (1999) Self-organization of periodic patterns by dissociated feather mesenchyme cells and the regulation of size, number and spacing of primordial. Development 125:4997–5009

    Google Scholar 

  • Maroto M, Pourquie O (2001) A molecular clock involved in somite segmentation. Curr Top Dev Biol 51:221–248

    PubMed  CAS  Google Scholar 

  • Müller WA, Plickert G (1982) Quantitative analysis of an inhibitory gradient field in the hydrozoan stolon. Roux’s Arch Dev Biol 191:56–63

    Google Scholar 

  • Palmeirim I et al (1997) Avian hairy gene expression identifies a molecular clock linked to vertebrate segmentation and somitogenesis. Cell 91:639–648

    Article  PubMed  CAS  Google Scholar 

  • Zakany J et al (2001) Localized and transient transcription of Hox genes suggests a link between patterning and the segmentation clock. Cell 106:207–217

    Article  PubMed  CAS  Google Scholar 

Box K12 Modelle biologischer Musterbildung

  • Haken H (1978) Synergetics. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  • Meinhardt H (1982) Models of biological pattern formation. Academic Press, New York

    Google Scholar 

  • Meinhardt H (1995) Algorithmic beauty and seashells. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  • Murray JD (1989) Mathematical biology. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  • Sekimara T et al (eds) Morphogenesis and pattern formation in biological systems. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Albert R et al (2003) Spatial pattern formation and morphogenesis in development:recent progress for two model systems. In: Sekimara T et al (eds) Morphogenesis and pattern formation in biological systems: 21–32. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Edelstein-Keshet L, Ermentrout BG (1990) Contact response of cells can mediate morphogenetic pattern formation. Differentiation 45:147–159

    PubMed  CAS  Google Scholar 

  • Eldar A et al (2003) Self-enhanced ligand degradation underlies robustness of morphogen gradients. Dev Cell 5:635–646

    Article  PubMed  CAS  Google Scholar 

  • Inouye K (2003) Pattern formation by cell movement in closely-packed tissues. In: Sekimara T et al (eds) Morphogenesis and pattern formation in biological systems: 193–202. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Karsten K et al (2004) Dpp gradient formation by dynamin-dependent endocytosis: receptor trafficking and the diffusion model. Development 131:4843–4856

    Article  CAS  Google Scholar 

  • Kondo S (2002) The reaction-diffusion system:a mechanism for autonomus pattern formation in the animal skin. Genes Cell 7:535–541

    Article  CAS  Google Scholar 

  • Meinhardt H, Gierer A (2000) Pattern formation by local self-activation and lateral inhibition. Bioessay 22:753–760

    Article  CAS  Google Scholar 

  • Meinhardt H (2001) Auf-und Abbau von Mustern in der Biologie. BIUZ 31:22–29

    Article  Google Scholar 

  • Meinhardt H (2003) Pattern forming reactions and the generation of primary embryonic axes. In: Sekimara T et al (eds) Morphogenesis and pattern formation in biological systems, pp 3–20. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Turing AM (1952) The chemical basis of morphogenesis. Philos Trans Roy Soc Lond B 237:37–72

    Google Scholar 

  • Sherratt JA et al (1995) A receptor based model for pattern formation in Hydra. Forma 10:77–95

    Google Scholar 

  • Spirov AV (1998) Game of morphogenesis: what can we learn from the pattern-form interplay models? Int J Bifurcation Chaos 8:991–1001

    Article  Google Scholar 

  • Steinberg M, Takeichi M (1994) Experimental specification of cell sorting, tissue spreading, and specific spatial patterning by quantitative differences in cadherin expression. Proc Natl Acad Sci USA 91:206–209

    Article  PubMed  CAS  Google Scholar 

  • Wolpert L (1969) Positional information and the spatial pattern of cellular differentiation. J Theoret Biol 25:1–47

    CAS  Google Scholar 

  • Wolpert L (1978) Pattern formation in biological development. Sci Am 239(4):154–164

    Article  PubMed  CAS  Google Scholar 

  • Wolpert L (1989) Positional information revisited. Development 1989[Suppl]:3–12

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2006). Positionsinformation, Musterbildung und embryonale Induktion. In: Entwicklungsbiologie und Reproduktionsbiologie von Mensch und Tieren. Springer-Lehrbuch. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-29472-4_12

Download citation

Publish with us

Policies and ethics