Skip to main content

Stable Isotope Probing: A Critique of Its Role in Linking Phylogeny and Function

  • Chapter
Nucleic Acids and Proteins in Soil

Part of the book series: Soil Biology ((SOILBIOL,volume 8))

10.7 Conclusions

Herein we have described the benefits being derived from the development of SIP alongside related caveats in the context of linking microbial phylogeny and function in soil environments. It is clear from the increasing frequency of publications in which SIP plays a role that it has great utility in its various guises, even in soil environments. We believe that with considered application SIP has the potential to confirm or discover the identity of microbes responsible for a large range of processes of interest to humans both in fundamental ecology and bioremediation. Despite this, we would still argue that there is room for methodological improvement. Ideally, we require a SIP methodology that allows the quantification of label incorporation in conjunction with sequencing based phylogenetic resolution. Further, it is important to emphasise that SIP can only penetrate the relationship between microbial community composition and function when the function of interest involves anabolic activity. There are countless important activities partaken by microbes that do not involve substrate assimilation. Despite the promises of SIP, microbial ecologists have at hand the challenge of developing even more ingenious means of unravelling the relationship between specific taxa and non-assimilatory functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adamczyk J, Hesselsoe M, Iversen N, Horn M, Lehner A, Nielsen PH, Schloter M, Roslev P, Wagner M (2003) The isotope array, a new tool that employs substrate-mediated labeling of rRNA for determination of microbial community structure and function. Appl Environ Microbiol 69:6875–6887

    Article  PubMed  CAS  Google Scholar 

  • Alexandrino M, Knief C, Lipski A (2001) Stable-isotope-based labelling of styrene-degrading microorganisms in biofilters. Appl Environ Microbiol 67:4796–4804

    Article  PubMed  CAS  Google Scholar 

  • Boschker HTS, Middelburg JJ (2002) Stable isotopes and biomarkers in microbial ecology. FEMS Microbiol Ecol 40:85–95

    Article  CAS  Google Scholar 

  • Boschker HTS, Nold SC, Wellsbury P, Bos D, de Graaf W, Pel R, Parkes RJ, Cappenberg TE (1998) Direct linking of microbial populations to specific biogeochemical processes by 13C-labelling of biomarkers. Nature 392:801–804

    Article  CAS  Google Scholar 

  • Boschker HTS, deGraaf W, Koster M, Meyer-Reil L, Cappenberg TE (2001) Bacterial populations and processes involved in acetate and propionate consumption in anoxic brackish sediment. FEMS Microbiol Ecol 35:97–103

    Article  PubMed  CAS  Google Scholar 

  • Bull ID, Parekh NR, Hall GH, Ineson P, Evershed RP (2000) Detection and classification of atmospheric methane oxidizing bacteria in soil. Nature 405:175–178

    Article  PubMed  CAS  Google Scholar 

  • Conrad R (1996) Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO). Microbiol Rev 60:609–640

    PubMed  CAS  Google Scholar 

  • Falchini L, Naumov N, Kuikman PJ, Bloem J, Nannipieri P (2003) CO2 evolution and denaturing gradient gel electrophoresis profiles of bacterial communities in soil following addition of low molecular weight substrates to simulate root exudation. Soil Biol Biochem 36:775–782

    Article  CAS  Google Scholar 

  • Gray ND, Head IM (2001) Linking genetic identity and function in communities of uncultured bacteria. Environ Microbiol 3:481–492

    Article  PubMed  CAS  Google Scholar 

  • Griffiths RI (2003) Carbon flux and soil bacteria: the correlation with diversity and perturbation. PhD thesis, University of Newcastle, UK

    Google Scholar 

  • Hanson JR, Macalady JL, Harris D, Scow KM (1999) Linking toluene degradation with specific microbial populations in soil. Appl Environ Microbiol 65:5403–5408

    PubMed  CAS  Google Scholar 

  • Hinrichs K-U, Hayes JM, Sylva SP, Brewer PG, DeLong EF (1999) Methane-consuming archaebacteria in marine sediments. Nature 398:802–805

    Article  PubMed  CAS  Google Scholar 

  • Jeon CO, Park W, Padmanabhan P, DeRito C, Snape JR, Madsen EL (2003) Discovery of a bacterium, with distinctive dioxygenase, that is responsible for in situ biodegradation in contaminated sediment. Proc Natl Acad Sci USA 100:13591–13596

    Article  PubMed  CAS  Google Scholar 

  • Johnsen AR, Winding A, Karlson U, Roslev P (2002) Linking of microorganisms to phenanthrene metabolism in soil by analysis of 13C-labelled cell lipids. Appl Environ Microbiol 68:6106–6113

    Article  PubMed  CAS  Google Scholar 

  • Kozdroj J, Van Elsas JD (2001) Structural diversity of microorganisms in chemically perturbed soil assessed by molecular and cytochemical approaches. J Microbiol Methods 43:197–212

    Article  PubMed  CAS  Google Scholar 

  • Lee N, Nielsen PH, Andreasen KH, Juretschko S, Nielsen JL, Schleifer KH, Wagner M (1999) Combination of fluorescent in situ hybridization and microautoradiography — a new tool for structure-function analyses in microbial ecology. Appl Environ Microbiol 65:1289–1297

    PubMed  CAS  Google Scholar 

  • Lueders T, Manefield M, Friedrich MW (2004a) Enhanced sensitivity of DNA-and rRNAbased stable isotope probing by fractionation and quantitative analysis of isopycnic centrifugation gradients. Environ Microbiol 6:73–78

    Article  PubMed  CAS  Google Scholar 

  • Lueders T, Wagner B, Claus P, Friedrich MW (2004b) Stable isotope probing of rRNA and DNA reveals a dynamic methylotroph community and trophic interactions with fungi and protozoa in oxic rice field soil. Environ Microbiol 6:60–72

    Article  PubMed  CAS  Google Scholar 

  • Lueders T, Pommerenke B, Friedrich MW (2004c) Stable isotope probing of microorganisms thriving at thermodynamic limits: syntrophic propionate oxidation in flooded soil. Appl Environ Microbiol 70:5778–5786

    Article  PubMed  CAS  Google Scholar 

  • MacGregor BJ, Bruchert V, Fleischer S, Amann R (2002) Isolation of small-subunit rRNA for stable isotopic characterization. Environ Microbiol 4:451–464

    Article  PubMed  CAS  Google Scholar 

  • Malosso E, English L, Hopkins DW, O’Donnell AG (2004) Use of 13C-labelled plant materials and ergosterol, PLFA and NFLA analyses to investigate organic matter decomposition in Antarctic soil. Soil Biol Biochem 36:165–175

    Article  CAS  Google Scholar 

  • Manefield M, Whiteley AS, Ostle N, Ineson P, Bailey MJ (2002a) Technical considerations for RNA-based stable isotope probing: an approach to associating microbial diversity with microbial community function. Rapid Commun Mass Spectrom 16:2179–2183

    Article  PubMed  CAS  Google Scholar 

  • Manefield M, Whiteley AS, Griffiths RI, Bailey M (2002b) RNA stable isotope probing, a novel means of linking microbial community function to phylogeny. Appl Environ Microbiol 68:5367–5373

    Article  PubMed  CAS  Google Scholar 

  • Morris SA, Radajewski S, Willison TW, Murrell JC (2002) Identification of the functionally active methanotroph population in a peat soil microcosm by stable-isotope probing. Appl Environ Microbiol 68:1446–1453

    Article  PubMed  CAS  Google Scholar 

  • Murrell JC, Radajewski S (2000) Cultivation-independent techniques for studying methanotroph ecology. Res Microbiol 151:807–814

    Article  PubMed  CAS  Google Scholar 

  • Olsen GJ, Lane DJ, Giovannoni SJ, Pace NR, Stahl DA (1986) Microbial ecology and evolution: a ribosomal RNA approach. Annu Rev Microbiol 40:337–365

    Article  PubMed  CAS  Google Scholar 

  • Orphan VJ, House CH, Hinrichs K-U, McKeegan KD, DeLong EF (2001) Methane-consuming Archaea revealed by directly coupled isotopic and phylogenetic analysis. Science 293:484–486

    Article  PubMed  CAS  Google Scholar 

  • Orphan VJ, House C, Hinrichs K-U, McKeegan KD, DeLong EF (2002) Multiple archaeal groups mediate methane oxidation in anoxic cold seep sediments. Proc Natl Acad Sci USA 99:7663–7668

    Article  PubMed  CAS  Google Scholar 

  • Ostle N, Whiteley AS, Bailey MJ, Sleep D, Ineson P, Manefield M (2003) Active microbial RNA turnover in a grassland soil estimated using a 13CO2 spike. Soil Biol Biochem 35:877–885

    Article  CAS  Google Scholar 

  • Padmanabhan P, Padmanabhan S, DeRito C, Gray A, Gannon D, Snape JR, Tsai CS, Park W, Jeon C, Madsen EL (2003) Respiration of 13C-labeled substrates added to soil in the field and subsequent 16S rRNA gene analysis of 13C-labeled soil DNA. Appl Environ Microbiol 69:1614–1622

    Article  PubMed  CAS  Google Scholar 

  • Pelz O, Chatzinotas A, Zarda-Hess A, Abraham W-R, Zeyer J (2001) Tracing toluene-assimilating sulfate-reducing bacteria using 13C-incorporation in fatty acids and wholecell hybridisation. FEMS Microbiol Ecol 38:123–131

    Article  CAS  Google Scholar 

  • Radajewski S, Ineson P, Parekh NR, Murrell JC (2000) Stable-isotope probing as a tool in microbial ecology. Nature 403:646–649

    Article  PubMed  CAS  Google Scholar 

  • Radajewski S, Webster G, Reay DS, Morris SA, Ineson P, Nedwell DB, Prosser JI, Murrell JC (2002) Identification of active methylotroph populations in an acidic forest soil by stable-isotope probing. Microbiology 148:2331–2342

    PubMed  CAS  Google Scholar 

  • Radajewski S, McDonald IR, Murrell JC (2003) Stable-isotope probing of nucleic acids: a window to the function of uncultured microorganisms. Curr Opin Biotechnol 14:296–302

    Article  PubMed  CAS  Google Scholar 

  • Sun M-Y (2000) Mass spectrometric characterisation of 13C-labelled lipid tracers and their degradation products in microcosm sediments. Org Geochem 31:199–209

    Article  CAS  Google Scholar 

  • Torsvik V, Goksoyr J, Daae FL (1990) High diversity in DNA of soil bacteria. Appl Environ Microbiol 56:782–787

    PubMed  CAS  Google Scholar 

  • Treonis AM, Ostle NJ, Stott AW, Primrose R, Grayston SJ, Ineson P (2004) Identification of groups of metabolically-active rhizosphere microorganisms by stable isotope probing of PLFAs. Soil Biol Biochem 36:533–537

    Article  CAS  Google Scholar 

  • Wellington EMH, Berry A, Krsek M (2003) Resolving diversity in relation to microbial community structure in soil: exploiting genomics and stable isotope probing. Curr Opin Microbiol 6:295–301

    Article  PubMed  CAS  Google Scholar 

  • Whitby CB, Hall H, Pickup R, Saunders JR, Ineson P, Parekh NR, McCarthy A (2001) 13C incorporation into DNA as a means of identifying the active components of ammonia-oxidizer populations. Lett Appl Microbiol 32:398–401

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Manefield, M., Griffiths, R.I., Bailey, M.J., Whiteley, A.S. (2006). Stable Isotope Probing: A Critique of Its Role in Linking Phylogeny and Function. In: Nannipieri, P., Smalla, K. (eds) Nucleic Acids and Proteins in Soil. Soil Biology, vol 8. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-29449-X_10

Download citation

Publish with us

Policies and ethics