Skip to main content

Semiconductor Nanoparticles

  • Conference paper
IWNMS 2004

Abstract

Semiconductor nanoparticles exhibit size dependent properties, when their size is comparable to the size of Bohr diameter for exciton. This can be exploited to increase fluorescence efficiency or increase the internal magnetic field strength in doped semiconductors. Nanoparticles are usually unstable and can aggregate. It is therefore necessary to protect them. Surface passivation using capping molecules or by making coreYshell particles are some useful ways. Here synthesis and results on doped and un-doped nanoparticles of ZnS, CdS and ZnO will be discussed. We shall present results on coreYshell particles using some of these nanoparticles and also discuss briefly the effect of Mn doping on hyperfine interactions in case of CdS nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jacak L., Hawrylak P. and Wojs A., Quantum Dots, Springer, Berlin Heidelberg New York, 1997.

    Google Scholar 

  2. Gaponenko S. V., Optical Properties of Semiconductor Nanocrystals, Cambridge, 1997.

    Google Scholar 

  3. Davis J. H., Physics of Low Dimensional Structures, Cambridge, 1998.

    Google Scholar 

  4. Banyai L. and Koch S. W., Semiconductor Quantum Dots, World Scientific Series on Atomic, Molecular and Optical Physics, Vol. 2, 1993.

    Google Scholar 

  5. Kelly M. J., Low Dimensional Semiconductors, Clarendon, 1995.

    Google Scholar 

  6. Jaros M., Physics and Applications of Semiconductor Microstructures, Clarendon, 1989.

    Google Scholar 

  7. Moriarty P., Rep. Prog. Phys. 64 (2001), 297.

    Article  ADS  Google Scholar 

  8. Gleiter H., Prog. Mater. Sci. 33 (1989), 223.

    Article  ADS  Google Scholar 

  9. Canham L. T., Appl. Phys. Lett. 57 (1990), 1046.

    Article  ADS  Google Scholar 

  10. Brus L. E., J. Chem. Phys. 80 (1984), 4403.

    Article  ADS  Google Scholar 

  11. Lee J., Sunder V. C., Heine J. R., Bawendi M. G. and Jensen K. F., Adv. Mater. 12 (2000), 1102.

    Article  Google Scholar 

  12. Henglein A., Top. Curr. Chem. 143 (1988), 113.

    Article  Google Scholar 

  13. Wang W. and Herron N., J. Phys. Chem. 95 (1991), 525.

    Article  Google Scholar 

  14. Murray C. B., Norris D. J. and Bawendi M. G., J. Am. Chem. Soc. 115 (1993), 8706.

    Article  Google Scholar 

  15. Stöber W. and Fink A., J. Coll. Int. Sci. 26 (1968), 62.

    Article  Google Scholar 

  16. Caruso F., Adv. Mater. 13 (2001), 11.

    Article  Google Scholar 

  17. Liz-Marźan L. M., Correa-Durate M. A., Pastorza-Santos I., Mulvaney P., Ung T., Giersig M. and Kotov N. A., Handbook of Surfaces and Interfaces of Materials, Nalwa H. S. (ed.), Nanostructured Material, Micelles and Colloids, Vol. 3, 2001, p. 189.

    Google Scholar 

  18. Brus L. E. and Trautman J. K., Phil. Trans. R. Soc. Lond. A 353 (1995), 313.

    Article  ADS  Google Scholar 

  19. Chestnoy N., Hull R. and Brus L. E., J. Chem. Phys. 85 (1986), 2237.

    Article  ADS  Google Scholar 

  20. Bawendi M. G., Steigerwald M. L. and Brus L. E., Ann. Rev. Phys. Chem. 41 (1990), 477.

    ADS  Google Scholar 

  21. Sze S. M.,Physics of Semiconductor Devices, Wiley, Delhi, 1981.

    Google Scholar 

  22. Lippens P. E. and Lanoo M., Phys. Rev., B 39 (1989), 10935.

    Article  ADS  Google Scholar 

  23. Ramakrishna M. V. and Friesner R. A., Phys. Rev. Lett. 67 (1991), 629.

    Article  ADS  Google Scholar 

  24. Bruchez M., Moronne M., Gin P., Weiss S. and Alivisatos A. P., Science 281 (1998), 2013.

    Article  ADS  Google Scholar 

  25. Gaponik N., Radtchenko I. L., Sukhorukov G. B., Weller H. and Rogasch A. L., Adv. Mater. 14 (2002), 879.

    Article  Google Scholar 

  26. Battersby B. J., Bryant D., Meutermans W., Matthews D., Smythe M. L. and Trau M., J. Ame. Chem. Soc. 122 (2000), 2138.

    Article  Google Scholar 

  27. Masumoto Y., In: Shionoya S. and Yen W. M. (eds.), Phosphor Handbook, CRC, Boston, p. 71.

    Google Scholar 

  28. Kulkarni S. K., In: Nalwa H. S. (ed.), Encyclopedia of Nanoscience and Nanotechnology, Vol. X, Ame. Sci. Pub., USA.

    Google Scholar 

  29. Hebalkar N., Kharrazi S., Ethiraj A., Urban J., Fink R. and Kulkarni S. K., J. Coll. Int. Sci. 278 (2004), 107.

    Article  Google Scholar 

  30. Ethiraj A. S., Hebalkar N, Sainkar S. R., Urban J. and Kulkarni S. K., Surface Engineering 20 (2004), 367.

    Article  Google Scholar 

  31. Ethiraj A. S., Hebalkar N., Kulkarni S. K., Pasricha R., Urban J., Dem C., Schmitt M., Kiefer W., Weinhardt L., Joshi S., Fink R., Heske C., Kumpf C. and Umbach E., J. Chem. Phys. 118 (2003), 8945.

    Article  ADS  Google Scholar 

  32. Sato K. and Yoshida H. K., Semicond. Sci. Tech. 17 (2002), 367.

    Article  ADS  Google Scholar 

  33. Hofmann D. M., Meyer B. K., Ekimov A. I., Merculov I. A., Efros A. L., Rosen M., Couino G., Gacoin T. and Boilot J. P., Sol. State Comm. 114 (2000), 547.

    Article  ADS  Google Scholar 

  34. Sapra S., Sarma D. D., Sanvito S. and Hill N. A., Nano Lett. 2 (2002), 605.

    Article  ADS  Google Scholar 

  35. Levy L., Feltin N., Ingert D. and Pileni M. P., J. Phys. Chem. B 101 (1997), 9153.

    Article  Google Scholar 

  36. Borse P. H., Srinivas D., Date S. K., Vogel W. and Kulkarni S. K., Phys. Rev., B 60 (1999), 8659.

    Article  ADS  Google Scholar 

  37. Kennedy T. A., Glasser E. R., Klein P. B. and Bhargava R. N., Phys. Rev. B 52 (1995), R14356.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this paper

Cite this paper

Bangal, M. et al. (2005). Semiconductor Nanoparticles. In: Somayajulu, D.R.S., Lieb, K.P. (eds) IWNMS 2004. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-29194-6_7

Download citation

Publish with us

Policies and ethics