Skip to main content

Intercellular Communication in Lens Development and Disease

  • Chapter
Gap Junctions in Development and Disease

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baldo GJ, Mathias RT (1992) Spatial variations in membrane properties in the intact rat lens. Biophys J 63:518–529

    PubMed  Google Scholar 

  • Baldo GJ, Gong X, Martinez-Wittinghan FJ, Kumar NM, Gilula NB, Mathias RT (2001) Gap junctional coupling in lenses from alpha(8) connexin knockout mice. J Gen Physiol 118:447–456

    Article  PubMed  Google Scholar 

  • Baruch A, Greenbaum D, Levy ET, Nielsen PA, Gilula NB, Kumar NM, Bogyo M (2001) Defining a link between gap junction communication, proteolysis, and cataract formation. J Biol Chem 276:28999–29006

    Article  PubMed  Google Scholar 

  • Bassnett S (2002) Lens organelle degradation. Exp Eye Res 74:1–6

    Article  PubMed  Google Scholar 

  • Bennett TM, Mackay DS, Knopf HL, Shiels A (2004) A novel missense mutation in the gene for gap-junction protein alpha3 (GJA3) associated with autosomal dominant “nuclear punctate” cataracts linked to chromosome 13q. Mol Vis 10:376–382

    PubMed  Google Scholar 

  • Berry V, Mackay D, Khaliq S, Francis PJ, Hameed A, Anwar K, Mehdi SQ, Newbold RJ, Ionides A, Shiels A, Moore T, Bhattacharya SS (1999) Connexin 50 mutation in a family with congenital “zonular nuclear” pulverulent cataract of Pakistani origin. Hum Genet 105:168–170

    Article  PubMed  Google Scholar 

  • Bevans CG, Kordel M, Rhee SK, Harris AL (1998) Isoform composition of connexin channels determines selectivity among second messengers and uncharged molecules. J Biol Chem 273:2808–2816

    Article  PubMed  Google Scholar 

  • Beyer EC, Kistler J, Paul DL, Goodenough DA (1989) Antisera directed against connexin43 peptides react with a 43-kD protein localized to gap junctions in myocardium and other tissues. J Cell Biol 108:595–605

    Article  PubMed  Google Scholar 

  • Brewitt B, Clark JI (1988) Growth and transparency in the lens, an epithelial tissue, stimulated by pulses of PDGF. Science 242:777–779

    PubMed  Google Scholar 

  • Bruzzone R, White TW, Paul DL (1996) Connections with connexins: the molecular basis of direct intercellular signaling. Eur J Biochem 238:1–27

    Article  PubMed  Google Scholar 

  • Candia OA, Zamudio AC (2002) Regional distribution of the Na(+) and K(+) currents around the crystalline lens of rabbit. Am J Physiol Cell Physiol 282:C252–C262

    PubMed  Google Scholar 

  • Chang B, Wang X, Hawes NL, Ojakian R, Davisson MT, Lo WK, Gong X (2002) A Gja8 (Cx50) point mutation causes an alteration of alpha 3 connexin (Cx46) in semi-dominant cataracts of Lop10 mice. Hum Mol Genet 11:507–513

    PubMed  Google Scholar 

  • Church RL, Wang JH, Steele E (1995) The human lens intrinsic membrane protein MP70 (Cx50) gene: clonal analysis and chromosome mapping. Curr Eye Res 14:215–221

    PubMed  Google Scholar 

  • Dahm R, van Marle J, Prescott AR, Quinlan RA (1999) Gap junctions containing alpha8-connexin (MP70) in the adult mammalian lens epithelium suggests a re-evaluation of its role in the lens. Exp Eye Res 69:45–56

    Article  PubMed  Google Scholar 

  • Donaldson PJ, Roos M, Evans C, Beyer E, Kistler J (1994) Electrical properties of mammalian lens epithelial gap junction channels. Invest Ophthalmol Vis Sci 35:3422–3428

    PubMed  Google Scholar 

  • Donaldson PJ, Dong Y, Roos M, Green C, Goodenough DA, Kistler J (1995) Changes in lens connexin expression lead to increased gap junctional voltage dependence and conductance. Am J Physiol 269:C590–C600

    PubMed  Google Scholar 

  • Donaldson P, Kistler J, Mathias RT (2001) Molecular solutions to mammalian lens transparency. News Physiol Sci 16:118–123

    PubMed  Google Scholar 

  • Ebihara L, Steiner E (1993) Properties of a nonjunctional current expressed from a rat connexin46 cDNA in Xenopus oocytes. J Gen Physiol 102:59–74

    Article  PubMed  Google Scholar 

  • Ebihara L, Xu X, Oberti C, Beyer EC, Berthoud VM (1999) Co-expression of lens fiber connexins modifies hemi-gap-junctional channel behavior. Biophys J 76:198–206

    PubMed  Google Scholar 

  • Evans WH, Martin PE (2002) Gap junctions: structure and function (Review). Mol Membr Biol 19:121–136

    Article  PubMed  Google Scholar 

  • Fishman GI, Moreno AP, Spray DC, Leinwand LA (1991) Functional analysis of human cardiac gap junction channel mutants. Proc Natl Acad Sci USA 88:3525–3529

    PubMed  Google Scholar 

  • Frasson M, Calixto N, Cronemberger S, de Aguiar RA, Leao LL, de Aguiar MJ (2004) Oculodentodigital dysplasia: study of ophthalmological and clinical manifestations in three boys with probably autosomal recessive inheritance. Ophthalmic Genet 25:227–236

    Article  PubMed  Google Scholar 

  • Gao J, Sun X, Yatsula V, Wymore RS, Mathias RT (2000) Isoform-specific function and distribution of Na/K pumps in the frog lens epithelium. J Membr Biol 178:89–101

    Article  PubMed  Google Scholar 

  • Gao J, Sun X, Martinez-Wittinghan FJ, Gong X, White TW, Mathias RT (2004) Connections between connexins, calcium, and cataracts in the lens. J Gen Physiol 124:289–300

    PubMed  Google Scholar 

  • Gao Y, Spray DC (1998) Structural changes in lenses of mice lacking the gap junction protein connexin43. Invest Ophthalmol Vis Sci 39:1198–1209

    PubMed  Google Scholar 

  • Gerido DA, White TW (2004) Connexin disorders of the ear, skin, and lens. Biochim Biophys Acta 1662:159–170

    PubMed  Google Scholar 

  • Gerido DA, Sellitto C, Li L, White TW (2003) Genetic background influences cataractogenesis, but not lens growth deficiency, in Cx50-knockout mice. Invest Ophthalmol Vis Sci 44:2669–2674

    Article  PubMed  Google Scholar 

  • Goldberg GS, Lampe PD, Nicholson BJ (1999) Selective transfer of endogenous metabolites through gap junctions composed of different connexins. Nat Cell Biol 1:457–459

    Article  PubMed  Google Scholar 

  • Gong X, Li E, Klier G, Huang Q, Wu Y, Lei H, Kumar NM, Horwitz J, Gilula NB (1997) Disruption of alpha3 connexin gene leads to proteolysis and cataractogenesis in mice. Cell 91:833–843

    Article  PubMed  Google Scholar 

  • Gong X, Baldo GJ, Kumar NM, Gilula NB, Mathias RT (1998) Gap junctional coupling in lenses lacking alpha3 connexin. Proc Natl Acad Sci USA 95:15303–15308

    Article  PubMed  Google Scholar 

  • Gong X, Agopian K, Kumar NM, Gilula NB (1999) Genetic factors influence cataract formation in alpha 3 connexin knockout mice. Dev Genet 24:27–32

    Article  PubMed  Google Scholar 

  • Goodenough DA (1992) The crystalline lens. A system networked by gap junctional intercellular communication. Semin Cell Biol 3:49–58

    PubMed  Google Scholar 

  • Graw J, Loster J, Soewarto D, Fuchs H, Meyer B, Reis A, Wolf E, Balling R, Hrabe dA (2001) Characterization of a mutation in the lens-specific MP70 encoding gene of the mouse leading to a dominant cataract. Exp Eye Res 73:867–876

    Article  PubMed  Google Scholar 

  • Gruijters WT, Kistler J, Bullivant S, Goodenough DA (1987) Immunolocalization of MP70 in lens fiber 16-17-nm intercellular junctions. J Cell Biol 104:565–572

    Article  PubMed  Google Scholar 

  • Hopperstad MG, Srinivas M, Spray DC (2000) Properties of gap junction channels formed by Cx46 alone and in combination with Cx50. Biophys J 79:1954–1966

    PubMed  Google Scholar 

  • Hyatt GA, Beebe DC (1993) Regulation of lens cell growth and polarity by an embryo-specific growth factor and by inhibitors of lens cell proliferation and differentiation. Development 117:701–709

    PubMed  Google Scholar 

  • Jiang H, Jin Y, Bu L, Zhang W, Liu J, Cui B, Kong X, Hu L (2003) A novel mutation in GJA3 (connexin46) for autosomal dominant congenital nuclear pulverulent cataract. Mol Vis 9:579–583

    PubMed  Google Scholar 

  • Jiang JX, Goodenough DA (1996) Heteromeric connexons in lens gap junction channels. Proc Natl Acad Sci USA 93:1287–1291

    Article  PubMed  Google Scholar 

  • Kistler J, Kirkland B, Bullivant S (1985) Identification of a 70,000-D protein in lens membrane junctional domains. J Cell Biol 101:28–35

    Article  Google Scholar 

  • Kistler J, Schaller J, Sigrist H (1990) MP38 contains the membrane-embedded domain of the lens fiber gap junction protein MP70. J Biol Chem 265:13357–13361

    PubMed  Google Scholar 

  • Konig N, Zampighi GA (1995) Purification of bovine lens cell-to-cell channels composed of connexin44 and connexin50. J Cell Sci 108 (Pt 9):3091–3098

    PubMed  Google Scholar 

  • Le AC, Musil LS (1998) Normal differentiation of cultured lens cells after inhibition of gap junction-mediated intercellular communication. Dev Biol 204:80–96

    Article  PubMed  Google Scholar 

  • Li Y, Wang J, Dong B, Man H (2004) A novel connexin46 (GJA3) mutation in autosomal dominant congenital nuclear pulverulent cataract. Mol Vis 10:668–671

    PubMed  Google Scholar 

  • Lin JS, Fitzgerald S, Dong Y, Knight C, Donaldson P, Kistler J (1997) Processing of the gap junction protein connexin50 in the ocular lens is accomplished by calpain. Eur J Cell Biol 73:141–149

    PubMed  Google Scholar 

  • Lovicu FJ, McAvoy JW (2001) FGF-induced lens cell proliferation and differentiation is dependent on MAPK (ERK1/2) signalling. Development 128:5075–5084

    PubMed  Google Scholar 

  • Mackay D, Ionides A, Kibar Z, Rouleau G, Berry V, Moore A, Shiels A, Bhattacharya S (1999) Connexin46 mutations in autosomal dominant congenital cataract. Am J Hum Genet 64:1357–1364

    Article  PubMed  Google Scholar 

  • Martinez-Wittinghan FJ, Sellitto C, Li L, Gong X, Brink PR, Mathias RT, White TW (2003) Dominant cataracts result from incongruous mixing of wild-type lens connexins. J Cell Biol 161:969–978

    Article  PubMed  Google Scholar 

  • Martinez-Wittinghan FJ, Sellitto C, White TW, Mathias RT, Paul D, Goodenough DA (2004) Lens gap junctional coupling is modulated by connexin identity and the locus of gene expression. Invest Ophthalmol Vis Sci 45:3629–3637

    Article  PubMed  Google Scholar 

  • Mathias RT, Riquelme G, Rae JL (1991) Cell to cell communication and pH in the frog lens. J Gen Physiol 98:1085–1103

    Article  PubMed  Google Scholar 

  • Mathias RT, Rae JL, Baldo GJ (1997) Physiological properties of the normal lens. Physiol Rev 77:21–50

    PubMed  Google Scholar 

  • McAvoy JW, Chamberlain CG (1989) Fibroblast growth factor (FGF) induces different responses in lens epithelial cells depending on its concentration. Development 107:221–228

    PubMed  Google Scholar 

  • Menko AS (2002) Lens epithelial cell differentiation. Experimental Eye Research 75:485–490

    Article  PubMed  Google Scholar 

  • Miller TM, Goodenough DA (1986) Evidence for two physiologically distinct gap junctions expressed by the chick lens epithelial cell. J Cell Biol 102:194–199

    Article  PubMed  Google Scholar 

  • Moreno AP, Saez JC, Fishman GI, Spray DC (1994) Human connexin43 gap junction channels. Regulation of unitary conductances by phosphorylation. Circ Res 74:1050–1057

    PubMed  Google Scholar 

  • Paterson CA, Delamere NA (2004) ATPases and lens ion balance. Exp Eye Res 78:699–703

    Article  PubMed  Google Scholar 

  • Paul DL, Ebihara L, Takemoto LJ, Swenson KI, Goodenough DA (1991) Connexin46, a novel lens gap junction protein, induces voltage-gated currents in nonjunctional plasmamembrane of Xenopus oocytes. J Cell Biol 115:1077–1089

    Article  PubMed  Google Scholar 

  • Paznekas WA, Boyadjiev SA, Shapiro RE, Daniels O, Wollnik B, Keegan CE, Innis JW, Dinulos MB, Christian C, Hannibal MC, Jabs EW (2003) Connexin 43 (GJA1) mutations cause the pleiotropic phenotype of oculodentodigital dysplasia. Am J Hum Genet 72:408–418

    Article  PubMed  Google Scholar 

  • Piatigorsky J (1981) Lens differentiation in vertebrates. A review of cellular and molecular features. Differentiation 19:134–153

    PubMed  Google Scholar 

  • Polyakov AV, Shagina IA, Khlebnikova OV, Evgrafov OV (2001) Mutation in the connexin 50 gene (GJA8) in a Russian family with zonular pulverulent cataract. Clin Genet 60:476–478

    Article  PubMed  Google Scholar 

  • Rae JL, Bartling C, Rae J, Mathias RT (1996) Dye transfer between cells of the lens. J Membr Biol 150:89–103

    Article  PubMed  Google Scholar 

  • Reaume AG, de Sousa PA, Kulkarni S, Langille BL, Zhu D, Davies TC, Juneja SC, Kidder GM, Rossant J (1995) Cardiac malformation in neonatal mice lacking connexin43. Science 267:1831–1834

    PubMed  Google Scholar 

  • Rees MI, Watts P, Fenton I, Clarke A, Snell RG, Owen MJ, Gray J (2000) Further evidence of autosomal dominant congenital zonular pulverulent cataracts linked to 13q11 (CZP3) and a novel mutation in connexin 46 (GJA3). Hum Genet 106:206–209

    Article  PubMed  Google Scholar 

  • Renwick JH, Lawler SD (1963) Probable linkage between a congenital cataract locus and the Duffy blood group locus. Ann Hum Genet 27:67–84

    PubMed  Google Scholar 

  • Rong P, Wang X, Niesman I, Wu Y, Benedetti LE, Dunia I, Levy E, Gong X (2002) Disruption of Gja8 (alpha8 connexin) in mice leads to microphthalmia associated with retardation of lens growth and lens fiber maturation. Development 129:167–174

    PubMed  Google Scholar 

  • Sellitto C, Li L, White TW (2004) Connexin50 is essential for normal postnatal lens cell proliferation. Invest Ophthalmol Vis Sci 45:3196–3202

    Article  PubMed  Google Scholar 

  • Shiels A, Mackay D, Ionides A, Berry V, Moore A, Bhattacharya S (1998) A missense mutation in the human connexin50 gene (GJA8) underlies autosomal dominant “zonular pulverulent” cataract, on chromosome 1q. Am J Hum Genet 62:526–532

    Article  PubMed  Google Scholar 

  • Sosinsky GE (1996) Molecular organization of gap junction membrane channels. J Bioenerg Biomembr 28:297–309

    Article  PubMed  Google Scholar 

  • Srinivas M, Costa M, Gao Y, Fort A, Fishman GI, Spray DC (1999) Voltage dependence of macroscopic and unitary currents of gap junction channels formed by mouse connexin50 expressed in rat neuroblastoma cells. J Physiol 517 (Pt 3):673–689

    Article  PubMed  Google Scholar 

  • Steele EC, Jr., Lyon MF, Favor J, Guillot PV, Boyd Y, Church RL (1998) A mutation in the connexin 50 (Cx50) gene is a candidate for the No2 mouse cataract. Curr Eye Res 17:883–889

    Article  PubMed  Google Scholar 

  • Tamiya S, Dean WL, Paterson CA, Delamere NA (2003) Regional distribution of Na, KATPase activity in porcine lens epithelium. Invest Ophthalmol Vis Sci 44:4395–4399

    Article  PubMed  Google Scholar 

  • Unger VM, Kumar NM, Gilula NB, Yeager M (1999) Three-dimensional structure of a recombinant gap junction membrane channel. Science 283:1176–1180

    Article  PubMed  Google Scholar 

  • Valiunas V, Beyer EC, Brink PR (2002) Cardiac gap junction channels show quantitative differences in selectivity. Circ Res 91:104–111

    Article  PubMed  Google Scholar 

  • White TW (2002) Unique and redundant connexin contributions to lens development. Science 295:319–320

    Article  PubMed  Google Scholar 

  • White TW, Bruzzone R (1996) Multiple connexin proteins in single intercellular channels: connexin compatibility and functional consequences. J Bioenerg Biomembr 28:339–350

    Article  PubMed  Google Scholar 

  • White TW, Paul DL (1999) Genetic diseases and gene knockouts reveal diverse connexin functions. Annu Rev Physiol 61:283–310

    Article  PubMed  Google Scholar 

  • White TW, Bruzzone R (2000) Intercellular communication in the eye: clarifying the need for connexin diversity. Brain Res Rev 32:130–137

    Article  PubMed  Google Scholar 

  • White TW, Bruzzone R, Goodenough DA, Paul DL (1992) Mouse Cx50, a functional member of the connexin family of gap junction proteins, is the lens fiber protein MP70. Mol Biol Cell 3:711–720

    PubMed  Google Scholar 

  • White TW, Bruzzone R, Wolfram S, Paul DL, Goodenough DA (1994) Selective interactions among the multiple connexin proteins expressed in the vertebrate lens: the second extracellular domain is a determinant of compatibility between connexins. J Cell Biol 125:879–892

    Article  PubMed  Google Scholar 

  • White TW, Goodenough DA, Paul DL (1998) Targeted ablation of connexin50 in mice results in microphthalmia and zonular pulverulent cataracts. J Cell Biol 143:815–825

    Article  PubMed  Google Scholar 

  • White TW, Sellitto C, Paul DL, Goodenough DA (2001) Prenatal lens development in connexin43 and connexin50 double knockout mice. Invest Ophthalmol Vis Sci 42:2916–2923

    PubMed  Google Scholar 

  • Willecke K, Eiberger J, Degen J, Eckardt D, Romualdi A, Guldenagel M, Deutsch U, Sohl G (2002) Structural and functional diversity of connexin genes in the mouse and human genome. Biol Chem 383:725–737

    Article  PubMed  Google Scholar 

  • Willoughby CE, Arab S, Gandhi R, Zeinali S, Arab S, Luk D, Billingsley G, Munier FL, Heon E (2003) A novel GJA8 mutation in an Iranian family with progressive autosomal dominant congenital nuclear cataract. J Med Genet 40:e124

    Article  PubMed  Google Scholar 

  • Zampighi GA, Simon SA, Hall JE (1992) The specialized junctions of the lens. Int Rev Cytol 136:185–225

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

DeRosa, A.M., Martinez-Wittinghan, F.J., Mathias, R.T., White, T.W. (2005). Intercellular Communication in Lens Development and Disease. In: Winterhager, E. (eds) Gap Junctions in Development and Disease. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-28621-7_8

Download citation

Publish with us

Policies and ethics