Skip to main content

Probes in Scanning Microscopies

  • Chapter
Nanotribology and Nanomechanics
  • 2377 Accesses

Summary

Scanning probe microscopy (SPM) provides nanometer-scale mapping of numerous sample properties in essentially any environment. This unique combination of high resolution and broad applicability has lead to the application of SPM to many areas of science and technology, especially those interested in the structure and properties of materials at the nanometer scale. SPM images are generated through measurements of a tip-sample interaction. A well-characterized tip is the key element to data interpretation and is typically the limiting factor.

Commercially available atomic force microscopy (AFM) tips, integrated with force sensing cantilevers, are microfabricated from silicon and silicon nitride by lithographic and anisotropic etching techniques. The performance of these tips can be characterized by imaging nanometer-scale standards of known dimension, and the resolution is found to roughly correspond to the tip radius of curvature, the tip aspect ratio, and the sample height. Although silicon and silicon nitride tips have a somewhat large radius of curvature, low aspect ratio, and limited lifetime due to wear, the widespread use of AFM today is due in large part to the broad availability of these tips. In some special cases, small asperities on the tip can provide resolution much higher than the tip radius of curvature for low-Z samples such as crystal surfaces and ordered protein arrays.

Several strategies have been developed to improve AFM tip performance. Oxide sharpening improves tip sharpness and enhances tip asperities. For high-aspect-ratio samples such as integrated circuits, silicon AFM tips can be modified by focused ion beam (FIB) milling. FIB tips reach three-degree cone angles over lengths of several microns and can be fabricated at arbitrary angles. Other high resolution and high-aspect-ratio tips are produced by electron beam deposition (EBD) in which a carbon spike is deposited onto the tip apex from the background gases in an electron microscope. Finally, carbon nanotubes have been employed as AFM tips. Their nanometer-scale diameter, long length, high stiffness, and elastic buckling properties make carbon nanotubes possibly the ultimate tip material for AFM. Nanotubes can be manually attached to silicon or silicon nitride AFM tips or “grown” onto tips by chemical vapor deposition (CVD), which should soon make them widely available. In scanning tunneling microscopy (STM), the electron tunneling signal decays exponentially with tip-sample separation, so that in principle only the last few atoms contribute to the signal. STM tips are, therefore, not as sensitive to the nanoscale tip geometry and can be made by simple mechanical cutting or electrochemical etching of metal wires. In choosing tip materials, one prefers hard, stiff metals that will not oxidize or corrode in the imaging environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Linnemann, T. Gotszalk, I. W. Rangelow, P. Dumania, and E. Oesterschulze. Atomic force microscopy and lateral force microscopy using piezoresistive cantilevers. J. Vac. Sci. Technol. B, 14(2):856–860, 1996.

    Article  CAS  Google Scholar 

  2. T. R. Albrecht, S. Akamine, T. E. Carver, and C. F. Quate. Microfabrication of cantilever styli for the atomic force microscope. J. Vac. Sci. Technol. A, 8(4):3386–3396, 1990.

    Article  CAS  Google Scholar 

  3. O. Wolter, T. Bayer, and J. Greschner. Micromachined silicon sensors for scanning force microscopy. J. Vac. Sci. Technol. B, 9(2):1353–1357, 1991.

    Article  CAS  Google Scholar 

  4. C. Bustamante and D. Keller. Scanning force microscopy in biology. Phys. Today, 48(12):32–38, 1995.

    Google Scholar 

  5. J. Vesenka, S. Manne, R. Giberson, T. Marsh, and E. Henderson. Colloidal gold particles as an incompressible atomic force microscope imaging standard for assessing the compressibility of biomolecules. Biophys. J., 65:992–997, 1993.

    CAS  Google Scholar 

  6. C. L. Cheung C. M. Lieber J. H. Hafner. Unpublished results, 2001.

    Google Scholar 

  7. J. H. Hafner, C. L. Cheung, T. H. Oosterkamp, and C. M. Lieber. High-yield assembly of individual single-walled carbon nanotube tips for scanning probe microscopies. J. Phys. Chem. B, 105(4):743–746, 2001.

    Article  CAS  Google Scholar 

  8. F. Ohnesorge and G. Binnig. True atomic resolution by atomic force microscopy through repulsive and attractive forces. Science, 260:1451–1456, 1993.

    CAS  Google Scholar 

  9. D. J. Muller, D. Fotiadis, and A. Engel. Mapping flexible protein domains at subnanometer resolution with the atomic force microscope. FEBS Lett., 430(1–2 Special Issue SI):105–111, 1998.

    Article  CAS  Google Scholar 

  10. D. J. Muller, D. Fotiadis, S. Scheuring, S. A. Muller, and A. Engel. Electrostatically balanced subnanometer imaging of biological specimens by atomic force microscope. Biophys. J., 76(2):1101–1111, 1999.

    Article  CAS  Google Scholar 

  11. R. B. Marcus, T. S. Ravi, T. Gmitter, K. Chin, D. Liu, W. J. Orvis, D. R. Ciarlo, C. E. Hunt, and J. Trujillo. Formation of silicon tips with < 1 nm radius. Appl. Phys. Lett., 56(3):236–238, 1990.

    Article  CAS  Google Scholar 

  12. S. Akamine, R. C. Barrett, and C. F. Quate. Improved atomic force microscope images using microcantilevers with sharp tips. Appl. Phys. Lett., 57(3):316–318, 1990.

    Article  CAS  Google Scholar 

  13. T. Ichihashi and S. Matsui. In situ observation on electron beam induced chemical vapor deposition by transmission electron microscopy. J. Vac. Sci. Technol. B, 6(6):1869–1872, 1988.

    Article  CAS  Google Scholar 

  14. D. J. Keller and C. Chih-Chung. Imaging steep, high structures by scanning force microscopy with electron beam deposited tips. Surf. Sci., 268:333–339, 1992.

    Article  CAS  Google Scholar 

  15. K. I. Schiffmann. Investigation of fabrication parameters for the electron-beam-induced deposition of contamination tips used in atomic force microscopy. Nanotechnology, 4:163–169, 1993.

    Article  CAS  Google Scholar 

  16. J. H. Hafner, C. L. Cheung, A. T. Woolley, and C. M. Lieber. Structural and functional imaging with carbon nanotube afm probes. Prog. Biophys. Mol. Biol., 77(1):73–110, 2001.

    Article  CAS  Google Scholar 

  17. M. M. J. Treacy, T. W. Ebbesen, and J. M. Gibson. Exceptionally high young’s modulus observed for individual carbon nanotubes. Nature, 381:678–680, 1996.

    Article  CAS  Google Scholar 

  18. A. Krishnan, E. Dujardin, T. W. Ebbesen, P. N. Yianilos, and M. M. J. Treacy. Young’s modulus of single-walled nanotubes. Phys. Rev. B, 58(20):14013–14019, 1998.

    Article  CAS  Google Scholar 

  19. E. W. Wong, P. E. Sheehan, and C. M. Lieber. Nanobeam mechanics — elasticity, strength, and toughness of nanorods and nanotubes. Science, 277(5334):1971–1975, 1997.

    Article  CAS  Google Scholar 

  20. J. P. Lu. Elastic properties of carbon nanotubes and nanoropes. Phys. Rev. Lett., 79(7):1297–1300, 1997.

    Article  CAS  Google Scholar 

  21. S. Iijima, C. Brabec, A. Maiti, and J. Bernholc. Structural flexibility of carbon nanotubes. J. Chem. Phys., 104(5):2089–2092, 1996.

    Article  CAS  Google Scholar 

  22. H. J. Dai, J. H. Hafner, A. G. Rinzler, D. T. Colbert, and R. E. Smalley. Nanotubes as nanoprobes in scanning probe microscopy. Nature, 384(6605):147–150, 1996.

    Article  CAS  Google Scholar 

  23. A. G. Rinzler, Y. H. Hafner, P. Nikolaev, L. Lou, S. G. Kim, D. Tomanek, D. T. Colbert, and R. E. Smalley. Unraveling nanotubes: Field emission from atomic wire. Science, 269:1550, 1995.

    CAS  Google Scholar 

  24. H. Nishijima, S. Kamo, S. Akita, Y. Nakayama, K. I. Hohmura, S. H. Yoshimura, and K. Takeyasu. Carbon-nanotube tips for scanning probe microscopy: Preparation by a controlled process and observation of deoxyribonucleic acid. Appl. Phys. Lett., 74(26):4061–4063, 1999.

    Article  CAS  Google Scholar 

  25. S. S. Wong, A. T. Woolley, T. W. Odom, J. L. Huang, P. Kim, and D. V. Vezenov, C. M. Lieber. Single-walled carbon nanotube probes for high-resolution nanostructure imaging. Appl. Phys. Lett., 73(23):3465–3467, 1998.

    Article  CAS  Google Scholar 

  26. J. H. Hafner, M. J. Bronikowski, B. R. Azamian, P. Nikolaev, A. G. Rinzler, D. T. Colbert, K. A. Smith, and R. E. Smalley. Catalytic growth of single-wall carbon nanotubes from metal particles. Chem. Phys. Lett., 296(1–2):195–202, 1998.

    Article  CAS  Google Scholar 

  27. P. Nikolaev, M. J. Bronikowski, R. K. Bradley, F. Rohmund, D. T. Colbert, K. A. Smith, and R. E. Smalley. Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide. Chem. Phys. Lett., 313(1–2):91–97, 1999.

    Article  CAS  Google Scholar 

  28. W. Z. Li, S. S. Xie, L. X. Qian, B. H. Chang, B. S. Zou, W. Y. Zhou, R. A. Zhao, and G. Wang. Large-scale synthesis of aligned carbon nanotubes. Science, 274(5293):1701–1703, 1996.

    Article  CAS  Google Scholar 

  29. J. H. Hafner, C. L. Cheung, and C. M. Lieber. Growth of nanotubes for probe microscopy tips. Nature, 398(6730):761–762, 1999.

    Article  CAS  Google Scholar 

  30. V. Lehmann. The physics of macroporous silicon formation. Thin Solid Films, 255:1–4, 1995.

    Article  CAS  Google Scholar 

  31. F. Ronkel, J. W. Schultze, and R. Arensfischer. Electrical contact to porous silicon by electrodeposition of iron. Thin Solid Films, 276(1–2):40–43, 1996.

    Article  CAS  Google Scholar 

  32. J. H. Hafner, C. L. Cheung, and C. M. Lieber. Direct growth of single-walled carbon nanotube scanning probe microscopy tips. J. Am. Chem. Soc., 121(41):9750–9751, 1999.

    Article  CAS  Google Scholar 

  33. E. B. Cooper, S. R. Manalis, H. Fang, H. Dai, K. Matsumoto, S. C. Minne, T. Hunt, and C. F. Quate. Terabit-per-square-inch data storage with the atomic force microscope. Appl. Phys. Lett., 75(22):3566–3568, 1999.

    Article  CAS  Google Scholar 

  34. E. Yenilmez, Q. Wang, R. J. Chen, D. Wang, and H. Dai. Wafer scale production of carbon nanotube scanning probe tips for atomic force microscopy. Appl. Phys. Lett., 80(12):2225–2227, 2002.

    Article  CAS  Google Scholar 

  35. A. Stemmer, A. Hefti, U. Aebi, and A. Engel. Scanning tunneling and transmission electron microscopy on identical areas of biological specimens. Ultramicroscopy, 30(3):263, 1989.

    Article  CAS  Google Scholar 

  36. R. Nicolaides, L. Yong, W. E. Packard, W. F. Zhou, H. A. Blackstead, K. K. Chin, J. D. Dow, J. K. Furdyna, M. H. Wei, R. C. Jaklevic, W. J. Kaiser, A. R. Pelton, M. V. Zeller, and J. J. Bellina. Scanning tunneling microscope tip structures. J. Vac. Sci. Technol. A, 6(2):445–447, 1988.

    Article  CAS  Google Scholar 

  37. J. P. Ibe, P. P. Bey, S. L. Brandow, R. A. Brizzolara, N. A. Burnham, D. P. DiLella, K. P. Lee, C. R. K. Marrian, and R. J. Colton. On the electrochemical etching of tips for scanning tunneling microscopy. J. Vac. Sci. Technol. A, 8:3570–3575, 1990.

    Article  CAS  Google Scholar 

  38. L. Libioulle, Y. Houbion, and J.-M. Gilles. Very sharp platinum tips for scanning tunneling microscopy. Rev. Sci. Instrum., 66(1):97–100, 1995.

    Article  CAS  Google Scholar 

  39. A. J. Nam, A. Teren, T. A. Lusby, and A. J. Melmed. Benign making of sharp tips for stm and fim: Pt, Ir, Au, Pd, and Rh. J. Vac. Sci. Technol. B, 13(4):1556–1559, 1995.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hafner, J.H. (2005). Probes in Scanning Microscopies. In: Bhushan, B. (eds) Nanotribology and Nanomechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-28248-3_3

Download citation

Publish with us

Policies and ethics