Skip to main content

Computational Modeling of Nanometer-Scale Tribology

  • Chapter
Nanotribology and Nanomechanics

Summary

Friction and wear have long been acknowledged as limiting factors to numerous applications and many areas of technology, which has lead to significant interest in understanding and controlling these processes. Current interest in microscale and nanoscale machines with moving parts add to this interest, especially as the mechanisms that lead to friction at the atomic-scale can sometimes be quite distinct from the mechanisms that dominate at the macroscale.

This chapter presents a review of the applications of computational modeling methods to atomic-scale and nanometer-scale tribology. It includes a discussion of computational modeling methods frequently employed in these studies, with some analysis of the conditions under which these methods are best applied. This is followed by a review of the findings of computational studies of nanometer-scale indentation, friction, and lubrication.

In this chapter, a relatively complete discussion of the contribution that molecular dynamics and related simulations are making in the area of nanotribology is presented. The examples discussed above make it clear that these approaches are providing exciting insights into friction, wear, and related processes at the atomic scale that could not have been obtained in any other way. Furthermore, the synergy between these simulations and new and experimental techniques such as the surface force apparatus and proximal probe microscopes is producing a revolution in our understanding of the origin of friction at its most fundamental atomic level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Dowson. History of Tribology. Longman, 1979.

    Google Scholar 

  2. K. L. Johnson, K. Kendell, and A. D. Roberts. Surface energy, the contact of elastic solids. Proc. R. Soc. Lond. A, 324:301–313, 1971.

    Article  CAS  Google Scholar 

  3. J. Krim. Friction at the atomic scale. Sci. Am., 275:74–80, 1996.

    Article  CAS  Google Scholar 

  4. J. Krim. Atomic-scale origins of friction. Langmuir, 12:4564–4566, 1996.

    CAS  Google Scholar 

  5. J. Krim. Experimental probes of atomic scale friction. Comments Cond. Mater. Phys., 17:263–280, 1995.

    CAS  Google Scholar 

  6. A. P. Sutton. Deformation mechanisms, electronic conductance, friction of metallic nanocontacts. Curr. Opin. Solid. State M, 1:827–833, 1996.

    CAS  Google Scholar 

  7. C. M. Mate. Force microscopy studies of the molecular origins of friction, lubrication. IBM J. Res. Dev., 39:617–627, 1995.

    Article  CAS  Google Scholar 

  8. A. M. Stoneham, M. M. D. Ramos, and A. P. Sutton. How do they stick together — the statics, dynamics of interfaces. Philos. Mag. A, 67:797–811, 1993.

    CAS  Google Scholar 

  9. I. L. Singer. Friction and energy dissipation at the atomic scale: A review. J. Vac. Sci. Technol. A, 12:2605–2616, 1994.

    CAS  Google Scholar 

  10. B. Bhushan, J. N. Israelachvili, and U. Landman. Nanotribology — friction, wear, lubrication at the atomic-scale. Nature, 374:607–616, 1995.

    CAS  Google Scholar 

  11. B. Bhushan. Handbook of Micro/Nanotechnology. CRC, 1995.

    Google Scholar 

  12. J. B. Sokoloff. Theory of atomic level sliding friction between ideal crystal interfaces. J. Appl. Phys., 72:1262–1270, 1992.

    CAS  Google Scholar 

  13. W. Zhong, G. Overney, and D. Tomanek. Theory of atomic force microscopy on elastic surfaces, the structure of surfaces 111. In S. Y. Tong, M. S. Van Hove, X. Xide, and K. Takayanagi, editors, Proceedings of the third International Conf. on the Structure of Surfaces, page 243, Berlin, 1991. Springer-Verlag.

    Google Scholar 

  14. I. L. Singer and H. M. Pollock. Macroscopic, Microscopic Processes. Kluwer, 1992.

    Google Scholar 

  15. J. N. Israelachvili. Intermolecular and Surface Forces: With Applications to Colloidal and Biological Systems. Academic Press, 1992.

    Google Scholar 

  16. G. Binnig, C. F. Quate, and C. Gerber. Atomic force microscope. Phys. Rev. Lett., 56:930–933, 1986.

    Google Scholar 

  17. C. M. Mate, G. M. Mcclelland, R. Erlandsson, and S. Chiang. Atomic-scale friction of a tungsten tip on a graphite surface. Phys. Rev. Lett., 59:1942–1945, 1987.

    CAS  Google Scholar 

  18. G. J. Germann, S. R. Cohen, G. Neubauer, G. M. Mcclelland, H. Seki, and D. Coulman. Atomic scale friction of a diamond tip on diamond (100)-surface, (111)-surface. J. Appl. Phys., 73:163–167, 1993.

    CAS  Google Scholar 

  19. R. W. Carpick and M. Salmeron. Scratching the surface: Fundamental investigations of tribology with atomic force microscopy. Chem. Rev., 97:1163–1194, 1997.

    CAS  Google Scholar 

  20. J. Krim, D. H. Solina, and R. Chiarello. Nanotribology of a Kr monolayer — a quartz-crystal microbalance study of atomic-scale friction. Phys. Rev. Lett., 66:181–184, 1991.

    CAS  Google Scholar 

  21. W. Zhong and D. Tomanek. First-principles theory of atomic-scale friction. Phys. Rev. Lett., 64:3054–3057, 1990.

    CAS  Google Scholar 

  22. G. A. Tomlinson. A molecular theory of friction. Philos. Mag. Ser. 7, 7:905–939, 1929.

    CAS  Google Scholar 

  23. F. C. Frenkel and T. Kontorova. On the theory of plastic demortation and twinning. Zh. Eksp. Teor. Fiz., 8:1340, 1938.

    Google Scholar 

  24. J. B. Sokoloff. Theory of dynamical friction between idealized sliding surfaces. Surf. Sci., 144:267–272, 1984.

    CAS  Google Scholar 

  25. J. B. Sokoloff. Theory of energy-dissipation in sliding crystal-surfaces. Phys. Rev. B, 42:760–765, 1990.

    Google Scholar 

  26. J. B. Sokoloff. Possible nearly frictionless sliding for mesoscopic solids. Phys. Rev. Lett., 71:3450–3453, 1993.

    CAS  Google Scholar 

  27. B. N. J. Persson and E. Tosatti. Physics of Sliding Friction. Kluwer, 1996.

    Google Scholar 

  28. J. S. Helman, W. Baltensperger, and J. A. Holyst. Simple-model for dry friction. Phys. Rev. B, 49:3831–3838, 1994.

    Google Scholar 

  29. B. N. J. Persson, D. Schumacher, and A. Otto. Surface resistivity, vibrational damping in adsorbed layers. Chem. Phys. Lett., 178:204–212, 1991.

    CAS  Google Scholar 

  30. C. W. Gear. Numerical Initial Value Problems in Ordinary Differential Equations. Prentice-Hall, 1971.

    Google Scholar 

  31. W. G. Hoover. Molecular Dynamics. Springer, 1986.

    Google Scholar 

  32. D. W. Heermann. Computer Simulation Methods in Theoretical Physics. Springer, 1986.

    Google Scholar 

  33. M. P. Allen and D. J. Tildesley. Computer Simulation of Liquids. Oxford, 1987.

    Google Scholar 

  34. J. M. Haile. Molecular Dynamics Simulation: Elementary Methods. Wiley, 1992.

    Google Scholar 

  35. D. W. Brenner and B. J. Garrison. Gas surface-reactions — molecular-dynamics simulations of real systems. Adv. Chem. Phys., 76:281–334, 1989.

    CAS  Google Scholar 

  36. D. W. Brenner. The art, science of an analytic potential. Phys. Status Solidi B, 217:23–40, 2000.

    CAS  Google Scholar 

  37. R. Car and M. Parrinello. Unified approach for molecular-dynamics, density-functional theory. Phys. Rev. Lett., 55:2471–2474, 1985.

    CAS  Google Scholar 

  38. M. Menon and R. E. Allen. New technique for molecular-dynamics computer-simulations — Hellmann—Feynman theorem, subspace Hamiltonian approach. Phys. Rev. B, 33:7099–7101, 1986.

    Google Scholar 

  39. O. F. Sankey and R. E. Allen. Atomic forces from electronic energies via the hellmann—feynman theorem, with application to semiconductor (110) surface relaxation. Phys. Rev. B, 33:7164–7171, 1986.

    Google Scholar 

  40. P. Ewald. Die berechnung optischer und elektrostatischer gitterpotentiale. Ann. Phys., 64:253–287, 1921.

    Google Scholar 

  41. D. M. Heyes. Electrostatic potentials, fields in infinite point-charge lattices. J. Chem. Phys., 74:1924–1929, 1981.

    CAS  Google Scholar 

  42. F. H. Stillinger and T. A. Weber. Computer-simulation of local order in condensed phases of silicon. Phys. Rev. B, 31:5262–5271, 1985.

    CAS  Google Scholar 

  43. J. N. Murrell, S. Carter, S. C. Farantos, P. Huxley, and A. J. C. Varandas. Molecular Potential Energy Functions. Wiley, 1984.

    Google Scholar 

  44. M. W. Finnis and J. E. Sinclair. A simple empirical n-body potential for transition-metals. Philos. Mag. A, 50:45–55, 1984.

    CAS  Google Scholar 

  45. S. M. Foiles, M. I. Baskes, and M. S. Daw. Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Phys. Rev. B, 33:7983–7991, 1986.

    CAS  Google Scholar 

  46. F. Ercolessi, M. Parrinello, and E. Tosatti. Au(100) reconstruction in the glue model. Surf. Sci., 177:314–328, 1986.

    CAS  Google Scholar 

  47. F. Ercolessi, E. Tosatti, and M. Parrinello. Au (100) surface reconstruction. Phys. Rev. Lett., 57:719–722, 1986.

    CAS  Google Scholar 

  48. A. P. Sutton. Electronic Structure of Materials. Clarendon, 1993.

    Google Scholar 

  49. G. C. Abell. Empirical chemical pseudopotential theory of molecular and metallic bonding. Phys. Rev. B, 31:6184–6196, 1985.

    CAS  Google Scholar 

  50. J. Tersoff. New empirical-model for the structural-properties of silicon. Phys. Rev. Lett., 56:632–635, 1986.

    CAS  Google Scholar 

  51. J. Tersoff. Modeling solid-state chemistry — interatomic potentials for multicomponent systems. Phys. Rev. B, 39:5566–5568, 1989.

    Google Scholar 

  52. D. W. Brenner. Tersoff-type potentials for carbon, hydrogen, oxygen. Mater. Res. Soc. Symp. Proc., 141:59–65, 1989.

    CAS  Google Scholar 

  53. D. W. Brenner. Empirical potential for hydrocarbons for use in simulating the chemical vapor-deposition of diamond films. Phys. Rev. B, 42:9458–9471, 1990.

    CAS  Google Scholar 

  54. K. E. Khor and S. Dassarma. Proposed universal interatomic potential for elemental tetrahedrally bonded semiconductors. Phys. Rev. B, 38:3318–3322, 1988.

    Google Scholar 

  55. D. W. Brenner. Relationship between the embedded-atom method, Tersoff potentials. Phys. Rev. Lett., 63:1022–1022, 1989.

    CAS  Google Scholar 

  56. B. G. Dick and A. W. Overhauser. Theory of the dielectric constant of alkali halide crystals. Phys. Rev., 112:90–103, 1958.

    CAS  Google Scholar 

  57. F. H. Streitz and J. W. Mintmire. Electrostatic potentials for metal-oxide surfaces and interfaces. Phys. Rev. B, 50:11996–12003, 1994.

    CAS  Google Scholar 

  58. S. Ogata, H. Iyetomi, K. Tsuruta, F. Shimojo, R. K. Kalia, A. Nakano, and P. Vashishta. Variable-charge interatomic potentials for molecular-dynamics simulations of TiO2. J. Appl. Phys., 86:3036–3041, 1991.

    Google Scholar 

  59. M. I. Baskes. Application of the embedded atom method to covalent materials: A semiempirical potential for silicon. Phys. Rev. Lett., 59:2666–2669, 1987.

    CAS  Google Scholar 

  60. M. I. Baskes, J. S. Nelson, and A. F. Wright. Semiempirical modified embedded atom potentials for silicon and germanium. Phys. Rev. B, 40:6085–6100, 1989.

    CAS  Google Scholar 

  61. M. I. Baskes. Modified embedded-atom potentials for cubic materials and impurities. Phys. Rev. B, 46:2727–2742, 1992.

    CAS  Google Scholar 

  62. T. Ohira, Y. Inoue, K. Murata, and J. Murayama. Magnetite scale cluster adhesion on metal oxide surfaces: Atomistic simulation study. Appl. Surf. Sci., 171:175–188, 2001.

    CAS  Google Scholar 

  63. J. H. R. Clarke, W. Smith, and L. V. Woodcok. Short range effective potentials for ionic fluids. J. Chem. Phys., 84:2290–2294, 1986.

    CAS  Google Scholar 

  64. D. Wolf, P. Keblinski, S.R. Phillpot, and J. Eggebrecht. Exact method for the simulation of coulombic systems by spherically truncated, pairwise 1/r summation. J. Chem. Phys., 110:8254–8282, 1999.

    CAS  Google Scholar 

  65. A. Yasukawa. Using an extended tersoff interatomic potential to analyze the static-fatigue strength of SiO2 under athmospheric influence. JSME Int. J. A, 39:313–320, 1996.

    CAS  Google Scholar 

  66. T. Iwasaki and H. Miura. Molecular dynamics analysis of adhesion strength of interfaces between thin films. J. Mater. Res., 16:1789–1794, 2001.

    CAS  Google Scholar 

  67. L. V. Woodcock. Isothermal molecular dynamics calculations for liquid salts. Chem. Phys. Lett., 10:257, 1971.

    CAS  Google Scholar 

  68. T. Schneider and E. Stoll. Molecular-dynamics study of a three-dimensional one-component model for distortive phase-transitions. Phys. Rev. B, 17:1302–1322, 1978.

    CAS  Google Scholar 

  69. K. Kremer and G. S. Grest. Dynamics of entangled linear polymer melts — a moleculardynamics simulation. J. Chem. Phys., 92:5057–5086, 1990.

    CAS  Google Scholar 

  70. S. A. Adelman and J. D. Doll. Generalized Langevin equation approach for atom-solid-surface scattering — general formulation for classical scattering off harmonic solids. J. Chem. Phys., 64:2375–2388, 1976.

    CAS  Google Scholar 

  71. S. A. Adelman. Generalized Langevin equations, many-body problems in chemical dynamics. Adv. Chem. Phys., 44:143–253, 1980.

    CAS  Google Scholar 

  72. J. C. Tully. Dynamics of gas-surface interactions — 3d generalized Langevin model applied to fcc, bcc surfaces. J. Chem. Phys., 73:1975–1985, 1980.

    CAS  Google Scholar 

  73. H. J. C. Berendsen, J. P. M. Postman, W. F. Van Gunsteren, A. DiNola, and J. R. Haak. Molecular dynamics with coupling to an external bath. J. Chem. Phys., 81:3684–3690, 1984.

    CAS  Google Scholar 

  74. S. Nose. A unified formulation of the constant temperature molecular-dynamics methods. J. Chem. Phys., 81:511–519, 1984.

    CAS  Google Scholar 

  75. S. Nose. A molecular-dynamics method for simulations in the canonical ensemble. Mol. Phys., 52:255–268, 1984.

    CAS  Google Scholar 

  76. G. J. Martyna, M. L. Klein, and M. Tuckerman. Nose—Hoover chains — the canonical ensemble via continuous dynamics. J. Chem. Phys., 97:2635–2643, 1992.

    Google Scholar 

  77. M. Schoen, C. L. Rhykerd, D. J. Diestler, and J. H. Cushman. Shear forces in molecularly thin-films. Science, 245:1223–1225, 1989.

    CAS  Google Scholar 

  78. J. E. Curry, F. S. Zhang, J. H. Cushman, M. Schoen, and D. J. Diestler. Transient coexisting nanophases in ultrathin films confined between corrugated walls. J. Chem. Phys., 101:10824–10832, 1994.

    CAS  Google Scholar 

  79. D. J. Adams. Grand canonical ensemble Monte-Carlo for a Lennard-Jones fluid. Mol. Phys., 29:307–311, 1975.

    CAS  Google Scholar 

  80. D. A. Bonnell. Scanning Tunneling Microscopy and Spectroscopy: Theory, Techniques, and Applications. VCH, 1993.

    Google Scholar 

  81. E. Meyer, R. Overney, D. Brodbeck, L. Howald, R. Luthi, J. Frommer, and H. J. Guntherodt. Friction, and wear of Langmuir—Blodgett-films observed by friction force microscopy. Phys. Rev. Lett., 69:1777–1780, 1992.

    CAS  Google Scholar 

  82. N. A. Burnham, D. D. Dominguez, R. L. Mowery, and R. J. Colton. Probing the surface forces of monolayer films with an atomic-force microscope. Phys. Rev. Lett., 64:1931–1934, 1990.

    CAS  Google Scholar 

  83. N. A. Burnham and R. J. Colton. Measuring the nanomechanical properties and surface forces of materials using an atomic force microscope. J. Vac. Sci. Technol. A, 7:2906–2913, 1989.

    CAS  Google Scholar 

  84. U. Landman, W. D. Luedtke, N. A. Burnham, and R. J. Colton. Atomistic mechanisms, dynamics of adhesion, nanoindentation, and fracture. Science, 248:454–461, 1990.

    CAS  Google Scholar 

  85. D. G. and A. H. Cottrell. Electron Theory in Alloy Design. Institute of Materials, 1992.

    Google Scholar 

  86. H. Raffi-Tabar and A. P. Sutton. Long-range Finnis-Sinclair potentials for fcc metallic alloys. Philos. Mag. Lett., 63:217–224, 1991.

    Google Scholar 

  87. U. Landman, W. D. Luedtke, and E. M. Ringer. Atomistic mechanisms of adhesive contact formation and interfacial processes. Wear, 153:3–30, 1992.

    CAS  Google Scholar 

  88. O. Tomagnini, F. Ercolessi, and E. Tosatti. Microscopic interaction between a gold tip and a Pb(100) surface. Surf. Sci., 287/288:1041–1045, 1991.

    Google Scholar 

  89. N. Ohmae. Field ion microscopy of microdeformation induced by metallic contacts. Philos. Mag. A, 74:1319–1327, 1996.

    CAS  Google Scholar 

  90. N. A. Burnham and R. J. Colton. Measuring the nanomechanical properties and surface forces of materials using an atomic force microscope. J. Vac. Sci. Technol. A, 7:2906–2913, 1996.

    Google Scholar 

  91. N. A. Burnham, R. J. Colton, and H. M. Pollock. Interpretation of force curves in force microscopy. Nanotechnol., 4:64–80, 1993.

    CAS  Google Scholar 

  92. N. Agrait, G. Rubio, and S. Vieira. Plastic deformation in nanometer scale contacts. Langmuir, 12:4505–4509, 1996.

    Google Scholar 

  93. R. W. Carpick, N. Agrait, D. F. Ogletree, and M. Salmeron. Variation of the interfacial shear strength, adhesion of ananometer-sized contact. Langmuir, 12:3334–3340, 1996.

    CAS  Google Scholar 

  94. O. Tomagnini, F. Ercolessi, and E. Tosatti. Microscopic interaction between a gold tip, and a pb(110) surface. Surf. Sci., 287:1041–1045, 1993.

    Google Scholar 

  95. J. W. M. Frenken, H. M. Vanpinxteren, and L. Kuipers. New views on surface melting obtained with stm and ion-scattering. Surf. Sci., 283:283–289, 1993.

    CAS  Google Scholar 

  96. J. Belak and I. F. Stowers. A molecular dynamics model of the orthogonal cutting process. Proc. Am. Soc. Precis. Eng., pages 76–79, 1990.

    Google Scholar 

  97. T. Yokohata and K. Kato. Mechanism of nanoscale indentation. Wear, 168:109–114, 1993.

    CAS  Google Scholar 

  98. M. Fournel, E. Lacaze, and M. Schott. Tip—surface interactions in stm experiments on au(111): Atomic-scale metal friction. Europhys. Lett., 34:489–494, 1996.

    CAS  Google Scholar 

  99. C. L. Kelchner, S. J. Plimpton, and J. C. Hamilton. Dislocation nucleation and defect structure during surface indentation. Phys. Rev. B, 58:11085–11088, 1998.

    CAS  Google Scholar 

  100. J. L. Costakramer, N. Garcia, P. Garciamochales, and P. A. Serena. Nanowire formation in macroscopic metallic contacts — quantum-mechanical conductance tapping a table top. Surf. Sci., 342:1144, 1995.

    Google Scholar 

  101. A. I. Yanson, I. K. Yanson, and J. M. van Ruitenbeek. Crossover from electronic to atomic shell structure in alkali metal nanowires. Phys. Rev. Lett., 8721, 2001.

    Google Scholar 

  102. A. I. Yanson, J. M. van Ruitenbeek, and I. K. Yanson. Shell effects in alkali metal nanowires. Low Temp. Phys., 27:807–820, 2001.

    CAS  Google Scholar 

  103. H. Raffi-Tabar and Y. Kawazoe. Dynamics of atomically thin layers-surface interactions in tip-substrate geometry. Jpn. J. Appl. Phys. 1, 32:1394–1400, 1993.

    Google Scholar 

  104. H. Raffi-Tabar, J. B. Pethica, and A. P. Sutton. Influence of adsorbate monolayer on the nano-mechanics of tip-substrate interactions. Mater. Res. Soc. Symp. Proc., 239:313–318, 1992.

    Google Scholar 

  105. K. Komvopoulos and W. Yan. Molecular dynamics simulation of single and repeated indentation. J. Appl. Phys., 82:4823–4830, 1997.

    CAS  Google Scholar 

  106. J. A. Zimmerman, C. L. Kelchner, P. A. Klein, J. C. Hamilton, and S. M. Foiles. Surface step effects on nanoindentation. Phys. Rev. Lett., 8716, 2001.

    Google Scholar 

  107. S. Kokubo. On the change in hardness of a plate caused by bending. Science Reports of the Tohoku Imperial University, 21:256–267, 1932.

    Google Scholar 

  108. G. Sines and R. Calson. Hardness measurements for determination of residual stresses. ASTM Bull., 180:35–37, 1952.

    Google Scholar 

  109. G. U. Oppel. Biaxial elasto-plastic analysis of load and residual stresses. Exp. Mech., 21:135–140, 1964.

    Google Scholar 

  110. T. R. Simes, S. G. Mellor, and D. A. Hills. A note on the influence of residual-stress on measured hardness. J. Strain Analysis Eng. Design, 19:135–137, 1984.

    Google Scholar 

  111. T. Y. Tsui, W. C. Oliver, and G. M. Pharr. Influences of stress on the measurement of mechanical properties using nanoindentation. 1. experimental studies in an aluminum alloy. J. Mater. Res., 11:752–759, 1996.

    CAS  Google Scholar 

  112. A. Bolshakov, W. C. Oliver, and G. M. Pharr. Influences of stress on the measurement of mechanical properties using nanoindentation. 2. finite element simulations. J. Mater. Res., 11:760–768, 1996.

    CAS  Google Scholar 

  113. J. D. Schall and D. W. Brenner. Atomistic simulation of the influence of pre-existing stress on the interpretation of nanoindentation data. J. Mater. Sci. B, 19:3172–3180, 2004.

    CAS  Google Scholar 

  114. U. Landman, W. D. Luedtke, and M. W. Ribarsky. Structural and dynamical consequences of interactions in interfacial systems. J. Vac. Sci. Technol. A, 7:2829–2839, 1989.

    CAS  Google Scholar 

  115. J. S. Kallman, W. G. Hoover, C. G. Hoover, A. J. Degroot, S. M. Lee, and F. Wooten. Molecular-dynamics of silicon indentation. Phys. Rev. B, 47:7705–7709, 1993.

    CAS  Google Scholar 

  116. K. Minowa and K. Sumino. Stress-induced amorphization of a silicon crystal by mechanical scratching. Phys. Rev. Lett., 69:320–322, 1992.

    CAS  Google Scholar 

  117. J. A. Harrison, C. T. White, R. J. Colton, and D. W. Brenner. Nanoscale investigation of indentation, adhesion, and fracture of diamond (111) surfaces. Surf. Sci., 271:57–67, 1992.

    CAS  Google Scholar 

  118. K. Enke, H. Dimigen, and H. Hubsch. Frictional-properties of diamond-like carbon layers. Appl. Phys. Lett., 36:291–292, 1980.

    CAS  Google Scholar 

  119. K. Enke. Some new results on the fabrication of and the mechanical, electrical, and optical-properties of i-carbon layers. Thin Solid Films, 80:227–234, 1981.

    CAS  Google Scholar 

  120. S. Miyake, S. Takahashi, I. Watanabe, and H. Yoshihara. Friction and wear behavior of hard carbon-films. Asle Trans., 30:121–127, 1987.

    CAS  Google Scholar 

  121. S. B. Sinnott, R. J. Colton, C. T. White, O. A. Shenderova, D. W. Brenner, and J. A. Harrison. Atomistic simulations of the nanometer-scale indentation of amorphous-carbon thin films. J. Vac. Sci. Technol. A, 15:936–940, 1997.

    CAS  Google Scholar 

  122. J. N. Glosli, M. R. Philpott, and G. M. McClelland. Molecular dynamics simulation of mechanical deformation of ultra-thin amorphous carbon films. Mater. Res. Soc. Symp. Proc., 383:431–435, 1995.

    CAS  Google Scholar 

  123. T. Y. Tsui, G. M. Pharr, W. C. Oliver, C. S. Bhatia, C. T. White, S. Anders, A. Anders, and I. G. Brown. Nanoindentation and nanoscratching of hard carbon coatings for magnetic disks. Mater. Res. Soc. Symp. Proc., 383:447, 1995.

    CAS  Google Scholar 

  124. A. Garg, J. Han, and S. B. Sinnott. Interactions of carbon-nanotubule proximal probe tips with diamond and graphene. Phys. Rev. Lett., 81:2260–2263, 1998.

    CAS  Google Scholar 

  125. A. L. Shluger, R. T. Williams, and A. L. Rohl. Lateral and friction forces originating during force microscope scanning of ionic surfaces. Surf. Sci., 343:273–287, 1995.

    CAS  Google Scholar 

  126. K. Cho and J. D. Joannopoulos. Mechanical hysteresis on an atomic-scale. Surf. Sci., 328:320–324, 1995.

    CAS  Google Scholar 

  127. V. Licht, E. Ernst, and N. Huber. Simulation of the hertzian contact damage in ceramics. Model. Simul. Mater. Sci. Eng., 11:477–486, 2003.

    Google Scholar 

  128. K. J. Tupper and D. W. Brenner. Compression-induced structural transition in a self-assembled monolayer. Langmuir, 10:2335–2338, 1994.

    CAS  Google Scholar 

  129. K. J. Tupper, R. J. Colton, and D. W. Brenner. Simulations of self-assembled monolayers under compression — effect of surface asperities. Langmuir, 10:2041–2043, 1994.

    CAS  Google Scholar 

  130. S. A. Joyce, R. C. Thomas, J. E. Houston, T. A. Michalske, and R. M. Crooks. Mechanical relaxation of organic monolayer films measured by force microscopy. Phys. Rev. Lett., 68:2790–2793, 1992.

    CAS  Google Scholar 

  131. C. M. Mate. Atomic-force-microscope study of polymer lubricants on silicon surfaces. Phys. Rev. Lett., 68:3323–3326, 1992.

    CAS  Google Scholar 

  132. V. N. Koinkar and B. Bhushan. Micro/nanoscale studies of boundary layers of liquid lubricants for magnetic disks. J. Appl. Phys., 79:8071–8075, 1996.

    CAS  Google Scholar 

  133. A. B. Tutein, S. J. Stuart, and J. A. Harrison. Indentation analysis of linear-chain hydrocarbon monolayers anchored to diamond. J. Phys. Chem. B, 103:11357–11365, 1999.

    CAS  Google Scholar 

  134. I. L. Singer. A thermochemical model for analyzing low wear-rate materials. Surf. Coat. Tech., 49:474–481, 1991.

    CAS  Google Scholar 

  135. I. L. Singer, S. Fayeulle, and P. D. Ehni. Friction and wear behavior of tin in air — the chemistry of transfer films and debris formation. Wear, 149:375–394, 1991.

    CAS  Google Scholar 

  136. J. A. Harrison, C. T. White, R. J. Colton, and D. W. Brenner. Molecular-dynamics simulations of atomic-scale friction of diamond surfaces. Phys. Rev. B, 46:9700–9708, 1992.

    CAS  Google Scholar 

  137. J. A. Harrison, R. J. Colton, C. T. White, and D. W. Brenner. Effect of atomic-scale surface-roughness on friction — a molecular-dynamics study of diamond surfaces. Wear, 168:127–133, 1993.

    CAS  Google Scholar 

  138. J. A. Harrison, C. T. White, R. J. Colton, and D. W. Brenner. Atomistic simulations of friction at sliding diamond interfaces. Mater. Res. Soc. Bull., 18:50–53, 1993.

    CAS  Google Scholar 

  139. J. N. Glosli and G. M. Mcclelland. Molecular-dynamics study of sliding friction of ordered organic monolayers. Phys. Rev. Lett., 70:1960–1963, 1993.

    CAS  Google Scholar 

  140. A. Koike and M. Yoneya. Molecular dynamics simulations of sliding friction of Langmuir-Blodgett monolayers. J. Chem. Phys., 105:6060–6067, 1996.

    CAS  Google Scholar 

  141. J. E. Hammerberg, B. L. Holian, and S. J. Zhuo. Studies of sliding friction in compressed copper. Conf. Am. Phys. Soc. Topical Group Shock Compression of Condensed Matter, Part 1:370, 1995.

    Google Scholar 

  142. M. R. Sorensen, K. W. Jacobsen, and P. Stoltze. Simulations of atomic-scale sliding friction. Phys. Rev. B, 53:2101–2113, 1996.

    Google Scholar 

  143. U. Landman, W. D. Luedtke, and A. Nitzan. Dynamics of tip substrate interactions in atomic force microscopy. Surf. Sci., 210:177, 1989.

    Google Scholar 

  144. M. D. Perry and J. A. Harrison. Friction between diamond surfaces in the presence of small third-body molecules. J. Phys. Chem. B, 101:1364–1373, 1997.

    Google Scholar 

  145. A. Buldum and S. Ciraci. Atomic-scale study of dry sliding friction. Phys. Rev. B, 55:2606–2611, 1997.

    CAS  Google Scholar 

  146. A. P. Sutton and J. B. Pithica. Inelastic flow processes in nanometer volumes of solids. J. Phys. Condens. Matter, 2:5317–5326, 1990.

    Google Scholar 

  147. S. Akamine, R. C. Barrett, and C. F. Quate. Improved atomic force microscope images using microcantilevers with sharp tips. Appl. Phys. Lett., 57:316–318, 1990.

    CAS  Google Scholar 

  148. J. A. Nieminen, A. P. Sutton, and J. B. Pethica. Static junction growth during frictional sliding of metals. Acta Metall. Mater., 40:2503–2509, 1992.

    CAS  Google Scholar 

  149. J. A. Niemienen, A. P. Sutton, J. B. Pethica, and K. Kaski. Mechanism of lubrication by a thin solid film on a metal surface. Mod. Sim. Mater. Sci. Eng., 1:83–90, 1992.

    Google Scholar 

  150. V. V. Pokropivny, V. V. Skorokhod, and A. V. Pokropivny. Atomistic mechanism of adhesive wear during friction of atomic sharp tungsten asperity over (114) bcc-iron surface. Mater. Lett., 31:49–54, 1997.

    CAS  Google Scholar 

  151. A. Dayo, W. Alnasrallah, and J. Krim. Superconductivity-dependent sliding friction. Phys. Rev. Lett., 80:1690–1693, 1998.

    CAS  Google Scholar 

  152. R. Erlandsson, G. Hadziioannou, C. M. Mate, G. M. Mcclelland, and S. Chiang. Atomic scale friction between the muscovite mica cleavage plane and a tungsten tip. J. Chem. Phys., 89:5190–5193, 1988.

    CAS  Google Scholar 

  153. K. L. Johnson. Contact Mechanics. Cambridge Univ. Press, 1985.

    Google Scholar 

  154. J. B. Pethica. Interatomic forces in scanning tunneling microscopy — giant corrugations of the graphite surface — comment. Phys. Rev. Lett., 57:3235–3235, 1986.

    CAS  Google Scholar 

  155. H. Tang, C. Joachim, and J. Devillers. Interpretation of afm images — the graphite surface with a diamond tip. Surf. Sci., 291:439–450, 1993.

    CAS  Google Scholar 

  156. S. Fujisawa, Y. Sugawara, and S. Morita. Localized fluctuation of a two-dimensional atomic-scale friction. Jpn. J. Appl. Phys. 1, 35:5909–5913, 1996.

    CAS  Google Scholar 

  157. S. Fujisawa, Y. Sugawara, S. Ito, S. Mishima, T. Okada, and S. Morita. The two-dimensional stick-slip phenomenon with atomic resolution. Nanotechnol., 3:138–142, 1993.

    Google Scholar 

  158. S. Fujisawa, Y. Sugawara, S. Morita, S. Ito, S. Mishima, and T. Okada. Study on the stick-slip phenomenon on a cleaved surface of the muscovite mica using an atomic-force lateral force microscope. J. Vac. Sci. Technol. B, 12:1635–1637, 1994.

    CAS  Google Scholar 

  159. S. Morita, S. Fujisawa, and Y. Sugawara. Spatially quantized friction with a lattice periodicity. Surf. Sci. Rep., 23:1–41, 1996.

    CAS  Google Scholar 

  160. J. A. Ruan and B. Bhushan. Atomic-scale and microscale friction studies of graphite, diamond using friction force microscopy. J. Appl. Phys., 76:5022–5035, 1994.

    CAS  Google Scholar 

  161. R. W. Carpick, N. Agrait, D. F. Ogletree, and M. Salmeron. Measurement of interfacial shear (friction) with an ultrahigh vacuum atomic force microscope. J. Vac. Sci. Technol. B, 14:2772–2772, 1996.

    CAS  Google Scholar 

  162. B. Samuels and J. Wilks. The friction of diamond sliding on diamond. J. Mater. Sci., 23:2846–2864, 1988.

    CAS  Google Scholar 

  163. S. Miyake, T. Miyamoto, and R. Kaneko. Increase of nanometer-scale wear of polished chemical-vapor-deposited diamond films due to nitrogen ion implantation. Nucl. Instrum. Methods B, 108:70–74, 1996.

    CAS  Google Scholar 

  164. R. J. A. van den Oetelaar and C. F. J. Flipse. Atomic-scale friction on diamond(111) studied by ultra-high vacuum atomic force microscopy. Surf. Sci., 384:828, 1997.

    Google Scholar 

  165. D. Mulliah, S. D. Kenny, and R. Smith. Modeling of stick—slip phenomena using molecular dynamics. Phys. Rev. B, 69:205407, 2004.

    Google Scholar 

  166. A._G. Khurshudov, K. Kato, and H. Koide. Nano-wear of the diamond AFM probing tip under scratching of silicon, studies by AFM. Tribol. Lett., 2:345–354, 1996.

    CAS  Google Scholar 

  167. A. Khurshudov and K. Kato. Volume increase phenomena in reciprocal scratching of polycarbonate studied by atomic-force microscopy. J. Vac. Sci. Technol. B, 13:1938–1944, 1995.

    CAS  Google Scholar 

  168. M. D. Perry and J. A. Harrison. Molecular dynamics studies of the frictional properties of hydrocarbon materials. Langmuir, 12:4552–4556, 1996.

    CAS  Google Scholar 

  169. M. D. Perry and J. A. Harrison. Molecular dynamics investigations of the effects of debris molecules on the friction and wear of diamond. Thin Solid Films, 291:211–215, 1996.

    Google Scholar 

  170. J. A. Harrison, C. T. White, R. J. Colton, and D. W. Brenner. Investigation of the atomic-scale friction and energy-dissipation in diamond using molecular-dynamics. Thin Solid Films, 260:205–211, 1995.

    CAS  Google Scholar 

  171. J. A. Harrison, C. T. White, R. J. Colton, and D. W. Brenner. Effects of chemically-bound, flexible hydrocarbon species on the frictional-properties of diamond surfaces. J. Phys. Chem., 97:6573–6576, 1993.

    CAS  Google Scholar 

  172. J. A. Harrison, R. J. Colton, C. T. White, and D. W. Brenner. Atomistic simulation of the nanoindentation of diamond and graphite surfaces. Mater. Res. Soc. Sym. Proc., 239:573–578, 1992.

    CAS  Google Scholar 

  173. J. A. Harrison and D. W. Brenner. Simulated tribochemistry — an atomic-scale view of the wear of diamond. J. Am. Chem. Soc., 116:10399–10402, 1994.

    CAS  Google Scholar 

  174. Z. Feng and J. E. Field. Friction of diamond on diamond and chemical vapor-deposition diamond coatings. Surf. Coat. Technol., 47:631–645, 1991.

    CAS  Google Scholar 

  175. B. N. J. Persson. Applications of surface resistivity to atomic scale friction, to the migration of hot adatoms, and to electrochemistry. J. Chem. Phys., 98:1659–1672, 1993.

    CAS  Google Scholar 

  176. B. N. J. Persson and A. I. Volokitin. Electronic friction of physisorbed molecules. J. Chem. Phys., 103:8679–8683, 1995.

    CAS  Google Scholar 

  177. H. Grabhorn, A. Otto, D. Schumacher, and B. N. J. Persson. Variation of the dcresistance of smooth and atomically rough silver films during exposure to C2H6, C2H4. Surf. Sci., 264:327–340, 1992.

    CAS  Google Scholar 

  178. A. D. Berman, W. A. Ducker, and J. N. Israelachvili. Origin and characterization of different stick—slip friction mechanisms. Langmuir, 12:4559–4563, 1996.

    CAS  Google Scholar 

  179. B. N. J. Persson. Theory of friction — dynamical phase-transitions in adsorbed layers. J. Chem. Phys., 103:3849–3860, 1995.

    CAS  Google Scholar 

  180. B. N. J. Persson and E. Tosatti. Layering transition in confined molecular thin-films — nucleation and growth. Phys. Rev. B, 50:5590–5599, 1994.

    CAS  Google Scholar 

  181. H. Yoshizawa and J. Israelachvili. Fundamental mechanisms of interfacial friction. 2. stick-slip friction of spherical and chain molecules. J. Phys. Chem., 97:11300–11313, 1993.

    CAS  Google Scholar 

  182. P. A. Thompson and M. O. Robbins. Origin of stick—slip motion in boundary lubrication. Science, 250:792–794, 1990.

    CAS  Google Scholar 

  183. B. N. J. Persson. Theory of friction: Friction dynamics for boundary lubricated surfaces. Phys. Rev. B, 55:8004–8012, 1997.

    CAS  Google Scholar 

  184. U. Landman, W. D. Luedtke, and J. P. Gao. Atomic-scale issues in tribology: Interfacial junctions and nano-elastohydrodynamics. Langmuir, 12:4514–4528, 1996.

    CAS  Google Scholar 

  185. E. Manias, G. Hadziioannou, and G. ten Brinke. Inhomogeneities in sheared ultrathin lubricating films. Langmuir, 12:4587–4593, 1996.

    CAS  Google Scholar 

  186. S. B. Sinnott and R. Andrews. Carbon nanotubes: Synthesis, properties, applications. Crit. Rev. Solid State Mater. Sci., 26:145–249, 2001.

    CAS  Google Scholar 

  187. B. Bhushan, B. K. Gupta, G. W. Van Cleef, C. Capp, and J. V. Coe. Sublimed C60 films for tribology. Appl. Phys. Lett., 62:3253–3255, 1993.

    CAS  Google Scholar 

  188. T. Thundat, R. J. Warmack, D. Ding, and R. N. Compton. Atomic force microscope investigation of C60 adsorbed on silicon and mica. Appl. Phys. Lett., 63:891–893, 1993.

    CAS  Google Scholar 

  189. C. M. Mate. Nanotribology studies of carbon surfaces by force microscopy. Wear, 168:17–20, 1993.

    CAS  Google Scholar 

  190. R. Lüthi, E. Meyer, and H. Haefke. Sled-type motion on the nanometer scale: Determination of dissipation and cohesive energies of C60. Science, 266:1979–1981, 1993.

    Google Scholar 

  191. R. Lüthi, H. Haefke, E. Meyer, L. Howald, H.-P. Lang, G. Gerth, and H. J. Güntherodt Frictional and atomic-scale study of C60 thin films by scanning force microscopy. Z. Phys. B, 95:1–3, 1994.

    Google Scholar 

  192. Q.-J. Xue, X.-S. Zhang, and F.-Y. Yan. Study of the structural transformations of C60/C70 crystals during friction. Chin. Sci. Bull., 39:819–822, 1994.

    CAS  Google Scholar 

  193. W. Allers, U. D. Schwarz, G. Gensterblum, and R. Wiesendanger. Low-load friction behavior of epitaxial C60 monolayers. Z. Phys. B, 99:1–2, 1995.

    CAS  Google Scholar 

  194. U. D. Schwarz, W. Allers, G. Gensterblum, and R. Wiesendanger. Low-load friction behavior of epitaxial C60 monolayers under Hertzian contact. Phys. Rev. B, 52:14976–14984, 1995.

    CAS  Google Scholar 

  195. J. Ruan and B. Bhushan. Nanoindentation studies of sublimed fullerene films using atomic force microscopy. J. Mater. Res., 8:3019–3022, 1996.

    Google Scholar 

  196. U. D. Schwarz, O. Zworner, P. Koster, and R. Wiesendanger. Quantiative analysis of the frictional properties of solid materials at low loads. i. carbon compounds. Phys. Rev. B, 56:6987–6996, 1997.

    CAS  Google Scholar 

  197. S. Okita, M. Ishikawa, and K. Miura. Nanotribological behavior of C60 films at an extremely low load. Surf. Sci., 442:959, 1999.

    Google Scholar 

  198. S. Okita and K. Miura. Molecular arrangement in C60 and C70 films on graphite and their nanotribological behavior. Nano Lett., 1:101–103, 2001.

    CAS  Google Scholar 

  199. K. Miura, S. Kamiya, and N. Sasaki. C60 molecular bearings. Phys. Rev. Lett., 90:055509, 2003.

    CAS  Google Scholar 

  200. A. Buldum and J. P. Lu. Atomic scale sliding and rolling of carbon nanotubes. Phys. Rev. Lett., 83:5050–5053, 1999.

    CAS  Google Scholar 

  201. M. R. Falvo, R. M. Taylor, A. Helser, V. Chi, F. P. Brooks, S. Washburn, and R. Superfine. Nanometer-scale rolling and sliding of carbon nanotubes. Nature, 397:236–238, 1999.

    CAS  Google Scholar 

  202. M. R. Falvo, J. Steele, R. M. T. II, and R. Superfine. Gearlike rolling motion mediated by commensurate contact: Carbon nanotubes on hopg. Phys. Rev. B, 62:R10664–R10667, 2000.

    Google Scholar 

  203. J. D. Schall and D. W. Brenner. Molecular dynamics simulations of carbon nanotube rolling and sliding on graphite. Mol. Simulat., 25:73–80, 2000.

    CAS  Google Scholar 

  204. B. Ni and S. B. Sinnott. Tribological properties of carbon nanotube bundles. Surf. Sci., 487:87–96, 2001.

    CAS  Google Scholar 

  205. B. Ni and S. B. Sinnott. Mechanical and tribological properties of carbon nanotubes investigated with atomistic simulations. In Nanotubes and related materials, pages A17.3.1–A17.3.5. MRS Symposia Proceedings, Materials Research Society, 2001.

    Google Scholar 

  206. K. Miura, T. Takagi, S. Kamiya, T. Sahashi, and M. Yamauchi. Natural rolling of zigzag multiwalled carbon nanotubes on graphite. Nano Lett., 1:161–163, 2001.

    CAS  Google Scholar 

  207. K. Miura, M. Ishikawa, R. Kitanishi, M. Yoshimura, K. Ueda, Y. Tatsumi, and N. Minami. Bundle structure and sliding of single-walled carbon nanotubes observed by friction-force microscopy. Appl. Phys. Lett., 78:832–834, 2001.

    CAS  Google Scholar 

  208. P. E. Sheehan and C. M. Lieber. Nanotribology and nanofabrication of MoO3 structures by atomic force microscopy. Science, 272:1158–1161, 1996.

    CAS  Google Scholar 

  209. J. Wang, K. C. Rose, and C. M. Lieber. Load-independent friction: MoO3 nanocrystal lubricants. J. Phys. Chem. B, 103:8405–8408, 1999.

    CAS  Google Scholar 

  210. Q. Ouyang and K. Okada. Nano-ball bearing effect of ultra-fine particles of cluster diamond. Appl. Surf. Sci., 78:309–313, 1994.

    CAS  Google Scholar 

  211. W. Allers, C. Hahn, M. Lohndorf, S. Lukas, S. Pan, U. D. Schwarz, and R. Wiesendanger. Nanomechanical investigations and modifications of thin films based on scanning force methods. Nanotechnol., 7:346–350, 1996.

    CAS  Google Scholar 

  212. R. Luthi, H. Haefke, E. Meyer, L. Howald, H. P. Lang, G. Gerth, and H. J. Guntherodt. Frictional and atomic-scale study of C60 thin-films by scanning force microscopy. Z. Phys. B, 95:1–3, 1994.

    Google Scholar 

  213. R. Luthi, E. Meyer, H. Haefke, L. Howald, W. Gutmannsbauer, and H. J. Guntherodt. Sled-type motion on the nanometer-scale — determination of dissipation and cohesive energies of C60. Science, 266:1979–1981, 1994.

    Google Scholar 

  214. B. Bhushan, B. K. Gupta, G. W. Vancleef, C. Capp, and J. V. Coe. Fullerene (C60) films for solid lubrication. Tribology, 36:573–580, 1993.

    CAS  Google Scholar 

  215. U. D. Schwarz, W. Allers, G. Gensterblum, and R. Wiesendanger. Low-load friction behavior of epitaxial C60 monolayers under hertzian contact. Phys. Rev. B, 52:14976–14984, 1995.

    CAS  Google Scholar 

  216. S. B. Legoas, R. Giro, and D. S. Galvao. Molecular dynamics simulations of C60 nanobearings. Chem. Phys. Lett., 386:425–429, 2004.

    CAS  Google Scholar 

  217. P. L. Dickrell, W. G. Sawyer, D. W. Hahn, S. B. Sinnott, B. Yurdumakan, A. Dhinojwala, N. R. Raravikar, L. S. Schadler, and P. M. Ajayan. Tribology of oriented carbon nanotube layers: Large frictional anisotropy and super adhesive behavior. Tribol. Lett., 18:59–62, 2005.

    CAS  Google Scholar 

  218. R. M. Overney, T. Bonner, E. Meyer, M. Reutschi, R. Luthi, L. Howald, J. Frommer, H. J. Guntherodt, M. Fujihara, and H. Takano. Elasticity, wear, and friction properties of thin organic films observed with atomic-force microscopy. J. Vac. Sci. Technol. B, 12:1973–1976, 1994.

    CAS  Google Scholar 

  219. R. M. Overney, E. Meyer, J. Frommer, D. Brodbeck, R. Luthi, L. Howald, H. J. Guntherodt, M. Fujihira, H. Takano, and Y. Gotoh. Friction measurements on phase-separated thin-films with a modified atomic force microscope. Nature, 359:133–135, 1992.

    CAS  Google Scholar 

  220. R. M. Overney, E. Meyer, J. Frommer, H. J. Guntherodt, M. Fujihira, H. Takano, and Y. Gotoh. Force microscopy study of friction and elastic compliance of phase-separated organic thin-films. Langmuir, 10:1281–1286, 1994.

    CAS  Google Scholar 

  221. M. GarciaParajo, C. Longo, J. Servat, P. Gorostiza, and F. Sanz. Nanotribological properties of octadecyltrichlorosilane self-assembled ultrathin films studied by atomic force microscopy: Contact and tapping modes. Langmuir, 13:2333–2339, 1997.

    CAS  Google Scholar 

  222. R. M. Overney, H. Takano, M. Fujihira, E. Meyer, and H. J. Guntherodt. Wear, friction and sliding speed correlations on Langmuir—Blodgett-films observed by atomic-force microscopy. Thin Solid Films, 240:105–109, 1994.

    CAS  Google Scholar 

  223. P. T. Mikulski and J. A. Harrison. Periodicities in the properties associated with the friction of model self-assembled monolayers. Tribol. Lett., 10:29–35, 2001.

    CAS  Google Scholar 

  224. P. T. Mikulski and J. A. Harrison. Packing-density effects on the friction of n-alkane monolayers. J. Am. Chem. Soc., 123:6873–6881, 2001.

    CAS  Google Scholar 

  225. P. T. Mikulski, G.-T. Gao, G. M. Chateauneuf, and J. A. Harrison. Contact forces at the sliding interface: Mixed vs. pure model alkane monolayers. J. Chem. Phys., 2004.

    Google Scholar 

  226. E. Barrena, C. Ocal, and M. Salmeron. Acomparative afm study of the structural and frictional properties of mixed and single component films of alkanethiols on Au(111). Surf. Sci., 482:1216–1221, 2001.

    Google Scholar 

  227. S. Lee, Y. S. Shon, R. Colorado, R. L. Guenard, T.R. Lee, and S. S. Perry. The influence of packing densities, surface order on the frictional properties of alkanethiol self-assembled monolayers (SAMs) on gold: A comparison of SAMS derived from normal and spiroalkanedithiols. Langmuir, 16:2220–2224, 2000.

    CAS  Google Scholar 

  228. G. M. Chateauneuf, P. T. Mikulski, G. T. Gao, and J. A. Harrison. Compression-and shear-induced polymerization in model diacetylene-containing monolayers. J. Phys. Chem. B, 108:16626–16635, 2004.

    CAS  Google Scholar 

  229. L. Z. Zhang, Y. S. Leng, and S. Y. Jiang. Tip-based hybrid simulation study of frictional properties of self-assembled monolayers: Effects of chain length, terminal group, scan direction, and scan velocity. Langmuir, 19:9742–9747, 2003.

    CAS  Google Scholar 

  230. F. P. Bowden and D. Tabor. The Friction and Lubrication of Solids. Part 2. Clarendon, 1964.

    Google Scholar 

  231. G. T. Gao, P. T. Mikulski, and J. A. Harrison. Molecular-scale tribology of amorphous carbon coatings: Effects of film thickness, adhesion, and long-range interactions. J. Am. Chem. Soc., 124:7202–7209, 2002.

    CAS  Google Scholar 

  232. G. T. Gao, P. T. Mikulski, G. M. Chateauneuf, and J. A. Harrison. The effects of film structure and surface hydrogen on the properties of amorphous carbon films. J. Phys. Chem. B, 107:11082–11090, 2003.

    CAS  Google Scholar 

  233. C. Daly and J. Krim. Sliding friction of solid xenon monolayers and bilayers on ag(111). Phys. Rev. Lett., 76:803–806, 1996.

    CAS  Google Scholar 

  234. M. Cieplak, E. D. Smith, and M. O. Robbins. Molecular-origins of friction — the force on adsorbed layers. Science, 265:1209–1212, 1994.

    CAS  Google Scholar 

  235. C. Daly and J. Krim. Friction and damping of Xe/Ag(111). Surf. Sci., 368:49–54, 1996.

    CAS  Google Scholar 

  236. B. N. J. Persson. Physics of Sliding Friction. Kluwer, 1996.

    Google Scholar 

  237. A. R. C. Baljon and M. O. Robbins. Adhesion and friction of thin films. Mater. Res. Soc. Bull., 22:22–26, 1997.

    CAS  Google Scholar 

  238. R. M. Overney, H. Takano, M. Fujihira, W. Paulus, and H. Ringsdorf. Anisotropy in friction and molecular stick—slip motion. Phys. Rev. Lett., 72:3546–3549, 1994.

    CAS  Google Scholar 

  239. E. Meyer, R. Luthi, L. Howald, W. Gutmannsbauer, H. Haefke, and H.-J. Guntherodt. Friction force microscopy on well defined surfaces. Nanotechnol., 7:340–344, 1996.

    CAS  Google Scholar 

  240. A. N. Gent and J. Schultz. Effect of wetting liquids on strength of adhesion of viscoelastic materials. J. Adhesion, 3:281–283, 1972.

    CAS  Google Scholar 

  241. A. N. Gent and S. M. Lai. Interfacial bonding, energy-dissipation, and adhesion. J. Polym. Sci. Pol. Phys., 32:1543–1555, 1994.

    CAS  Google Scholar 

  242. A. Mayer, T. Pith, G. H. Hu, and M. Lambla. Effect of the structure of latex-particles on adhesion. 3. analogy between peel adhesion and rheological properties of acrylic copolymers. J. Polym. Sci. Pol. Phys., 33:1793–1801, 1995.

    CAS  Google Scholar 

  243. A. R. C. Baljon and M. O. Robbins. Energy dissipation during rupture of adhesive bonds. Science, 271:482–484, 1996.

    CAS  Google Scholar 

  244. G. J. Vancso, S. Forster, H. Leist, G. Liu, and D. Trifonova. Anisotropic stick-slip friction of highly oriented thin films of poly(tetrafluoroethylene) at the molecular level. Tribol. Lett., 2:231–246, 1996.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Heo, SJ., Sinnott, S.B., Brenner, D.W., Harrison, J.A. (2005). Computational Modeling of Nanometer-Scale Tribology. In: Bhushan, B. (eds) Nanotribology and Nanomechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-28248-3_13

Download citation

Publish with us

Policies and ethics