Skip to main content

Spatiotemporal Dynamics of Visual Perception Across Neural Maps and Pathways

  • Chapter
Handbook of Geometric Computing

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbott L. F., Varela K., Sen K., Nelson S.B. (1997) Synaptic depression and cortical gain control. Science 275:220–223

    Article  Google Scholar 

  2. Albright T.D., Desimone R., Gross C.G. (1984) Columnar organization of directionally selective cells in visual area MT of the macaque. J. Neurophysiol. 51:16–31

    Google Scholar 

  3. Bachmann T. (1994) Psychophysiology of Visual Masking: The Fine Structure of Conscious Experience. Nova Science, New York

    Google Scholar 

  4. Baron M., Westheimer, G. (1973) Visual acuity as a function of exposure duration. J. Opt. Soc. Am. 63:212–219

    Google Scholar 

  5. Bex P.J., Edgar G.K. (1996) Shifts in perceived location of a blurred edge increase with contrast. Perception and Psychophysics 58:31–33

    Google Scholar 

  6. Breitmeyer B.G. (1984) Visual masking: An Integrative Approach. Oxford University Press, Oxford

    Google Scholar 

  7. Breitmeyer B.G., Ganz, L. (1976) Implications of sustained and transient channels for theories of visual pattern masking, saccadic suppression, and information processing. Psychological Rev. 83:1–36

    Article  Google Scholar 

  8. Breitmeyer B.G., Öğmen H. (2000) Recent models and findings in visual backward masking: A comparison, review, and update. Perception and Psychophysics 62:1572–1595

    Google Scholar 

  9. Breitmeyer B.G., Rudd M., Dunn K. (1981) Metacontrast investigations of sustained-transient channel inhibitory interactions. J. of Exp. Psych: Human Perception and Performance 7:770–779

    Article  Google Scholar 

  10. Burr D. (1980) Motion smear. Nature 284:164–165

    Article  Google Scholar 

  11. Burr D.C., Morgan, M.J. (1997) Motion deblurring in human vision. Proc. R. Soc. Lond. B 264:431–436

    Article  Google Scholar 

  12. Carandini M., Heeger D.J. (1994) Summation and division by neurons in primate visual cortex. Science 264:1333–1336

    Google Scholar 

  13. Carpenter G. A., Grossberg S. (1981) Adaptation and transmitter gating in vertebrate photoreceptors. J. of Theor. Neurobiology 1:1–42

    Google Scholar 

  14. Chen S., Bedell H.E., Öğmen H. (1995) A target in real motion appears blurred in the absence of other proximal moving targets. Vision Res. 35:2315–2328

    Article  Google Scholar 

  15. Croner L.J., Kaplan E. (1995) Receptive fields of P and M ganglion cells across the primate retina. Vision Res. 35:7–24

    Article  Google Scholar 

  16. De Monasterio F.M. (1978) Properties of concentrically organized X and Y ganglion cells of macaque retina. J. Neurophysiol. 41:1394–1417

    Google Scholar 

  17. Dember W.N., Purcell D.G. (1967) Recovery of masked visual targets by inhibition of the masking stimulus. Science 157:1335–1336

    Google Scholar 

  18. De Valois K.K. (1977) Spatial frequency adaptation can enhance contrast sensitivity. Vision Res. 17:209–215

    Article  Google Scholar 

  19. De Valois R.L., De Valois K.K. (1990) Spatial Vision. Oxford University Press, New York

    Google Scholar 

  20. De Valois K.K., Switkes E. (1980) Spatial frequency specific interaction of dot patterns and gratings. Proc. Nat. Acad. Sci. USA 77:662–665

    Google Scholar 

  21. Enns J.T., DiLollo V. (1997) Object substitution: A new form of masking in unattended visual locations. Psychological Science 8:135–139

    Article  Google Scholar 

  22. Gaudiano P. (1992) A unified neural network of spatio-temporal processing in X and Y retinal ganglion cells. 2: Temporal adaptation and simulation of experimental data. Biol. Cybern. 67:23–34

    Article  MATH  Google Scholar 

  23. Georgeson M.A. (1994) From filters to features: location, orientation, contrast and blur. CIBA Foundation Symposia 184:147–169

    Google Scholar 

  24. Grossberg S. (1972) A neural theory of punishment and avoidance, II: Quantitative theory. Mathematical Biosciences 15:253–285

    Article  MATH  MathSciNet  Google Scholar 

  25. Grossberg S. (1988) Nonlinear neural networks: Principles, mechanisms and architectures. Neural Networks 1:17–61

    Article  Google Scholar 

  26. Hamerly J.R., Dvorak, C.A. (1981) Detection and discrimination of blur in edges and lines. J. Opt. Soc. Am. 71:448–452

    Article  Google Scholar 

  27. Hendry S.H.C., Reid, R.C. (2000) The koniocellular pathway in primate vision. Annu. Rev. Neurosci. 23:127–153

    Article  Google Scholar 

  28. Hogben J.H., Di Lollo V. (1985) Suppression of visible persistence in apparent motion. Perception and Psychophysics 38:450–460

    Google Scholar 

  29. Hood D. (1973) The effects of edge sharpness and exposure duration on detection threshold. Vision Res. 13:759–766

    Article  Google Scholar 

  30. Hubel D.H., Wiesel T.N. (1968) Receptive fields and functional architecture of monkey striate cortex. J. Physiol. London 195:215–243

    Google Scholar 

  31. Koch C., Segev I. (1989) Methods in Neuronal Modeling. MIT Press, Cambridge, MA

    Google Scholar 

  32. Livingstone M., Hubel, D. (1988) Segregation of form, color, movement, and depth: Anatomy, physiology, and perception. Science 240:740–749

    Google Scholar 

  33. Maunsell J.H.R., Gibson J.R. (1992) Visual response latencies in striate cortex of the macaque monkey. J. Neurophysiol. 68:1332–1344

    Google Scholar 

  34. Milner A.D., Goodale M.A. (1995) The Visual Brain in Action. Oxford University Press, Oxford

    Google Scholar 

  35. Mishkin M., Ungerleider L.G., Macko, K.A. (1983) Object vision and spatial vision: Two cortical pathways. Trends in Neurosciences 6:414–417

    Article  Google Scholar 

  36. Nowak L.G., Munk M.H.J., Girard P., Bullier J. (1995) Visual latencies in areas V1 and V2 of the macaque monkey. Visual Neuroscience 12:371–384

    Google Scholar 

  37. Öğmen H. (1993) A neural theory of retino-cortical dynamics. Neural Networks 6:245–273

    Article  Google Scholar 

  38. Öğmen H., Gagné S. (1990) Neural models for sustained and on-off units of insect lamina. Biol. Cybern. 63:51–60

    Article  Google Scholar 

  39. Öğmen H., Breitmeyer B.G., Melvin R. (2003) The what and where in visual masking. Vision Res. 43:1337–1350

    Article  Google Scholar 

  40. Pääkkönen A.K., Morgan M.J. (1994) Effect of motion on blur discrimination. J. Opt. Soc. Am. A 11:992–1002

    Article  Google Scholar 

  41. Pizlo Z. (2001) Perception viewed as an inverse problem. Vision Res. 41:3145–3161

    Article  Google Scholar 

  42. Purpura K., Tranchina D., Kaplan E., Shapley R.M. (1990) Light adaptation in primate retina: Analysis of changes in gain and dynamics of monkey retinal ganglion cells. Visual Neuroscience 4:75–93

    Article  Google Scholar 

  43. Purushothaman G., Öğmen H., Chen S., Bedell H.E. (1998) Motion deblurring in a neural network model of retino-cortical dynamics. Vision Res. 38:1827–1842

    Article  Google Scholar 

  44. Purushothaman G., Lacassagne D., Bedell H.E., Öğmen H. (2002) Effect of exposure duration, contrast, and base blur on coding and discrimination of edges. Spatial Vision 15:341–376

    Article  Google Scholar 

  45. Ramachandran V.S., Cobb S. (1995) Visual attention modulates metacontrast masking. Nature 373:66–68

    Article  Google Scholar 

  46. Salin P.-A., and Bullier J. (1995) Corticocortical connections in the visual system: structure and function. Physiological Reviews 75:107–154

    Google Scholar 

  47. Sarikaya M., Wang W., Öğmen H. (1998) Neural network model of on-off units in the fly visual system: simulations of dynamic behavior. Biol. Cybern. 78:399–412

    Article  MATH  Google Scholar 

  48. Shelley-Tremblay J., Mack A. (1999) Metacontrast masking and attention. Psychological Science 10:508–515

    Article  Google Scholar 

  49. Stecher S., Sigel C., Lange R.V. (1973) Composite adaptation and spatial frequency interactions. Vision Res. 13:2527–2531

    Article  Google Scholar 

  50. Tolhurst D.J. (1972) Adaptation to square-wave gratings: Inhibition between spatial frequency channels in the human visual system. J. Physiol. 226:231–248

    Google Scholar 

  51. Tootell R.B.H., Silverman M.S., De Valois R.L. (1981) Spatial frequency columns in primary visual cortex. Science 214:813–815

    Google Scholar 

  52. Tootell R.B.H., Silverman M.S., Hamilton S.L., De Valois R.L., Switkes E. (1988) Functional anatomy of macaque striate visual cortex. 3. Color. J. Neurosci. 8:1569–1593

    Google Scholar 

  53. Virsu V., Laurinen, P. (1977) Long-lasting afterimages caused by neural adaptation. Vision Res. 17:853–860

    Article  Google Scholar 

  54. Visser T.A., Enns J.T. (2001) The role of attention in temporal integration. Perception 30:135–145

    Article  Google Scholar 

  55. Westheimer G. (1991) Sharpness discrimination for foveal targets. J. Opt. Soc. Am. 8:681–685

    Article  Google Scholar 

  56. Yeshurun Y., Carrasco M. (1998) Attention improves or impairs visual performance by enhancing spatial resolution. Nature 396:72–75

    Article  Google Scholar 

  57. Yeshurun Y., Levy L. (2003) Transient spatial attention degrades temporal resolution. Psychological Science 14:225–231

    Article  Google Scholar 

  58. Youping X., Yi W., Felleman D.J. (2003) A spatially organized representation of colour in macaque cortical area V2. Nature 421:535–539

    Article  Google Scholar 

  59. Zeki S. (1997) The color and motion systems as guides to conscious visual perception. Cerebral Cortex 12:777–809

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Öğmen, H. (2005). Spatiotemporal Dynamics of Visual Perception Across Neural Maps and Pathways. In: Handbook of Geometric Computing. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-28247-5_1

Download citation

  • DOI: https://doi.org/10.1007/3-540-28247-5_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20595-1

  • Online ISBN: 978-3-540-28247-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics