Skip to main content

Molecular Interactions between Rhizobium and Legumes

  • Chapter
Molecular Basis of Symbiosis

Part of the book series: Progress in Molecular and Subcellular Biology ((PMSB,volume 41))

6 Conclusions

Tremendous advances in our understanding of the Rhizobium-legume symbioses have been made. The probable identification of NFR1 and NFR5 as Nod-factor receptors and the discovery of symbiotically relevant protein secretion systems in rhizobia, are but two of the milestones in this field of Probable commonalities between the infection of legumes by arbuscular mycorrhiza and rhizobia suggest similar evolutionary mechanisms. In the years that lay ahead, more parts of the symbiotic puzzle will be put together at an ever-increasing pace. research. Light is being shed on the fundamental role of SPS in symbiosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albrecht C, Geurts R, Bisseling T (1999) Legume nodulation and mycorrhizae formation; two extremes in host specificity meet. EMBO J 18:281–288

    Article  PubMed  CAS  Google Scholar 

  • An J, Carlson RW, Glushka J, Streeter JG (1995) The structure of a novel polysaccharide produced by Bradyrhizobium species within soybean nodules. Carbohydr Res 269:303–317

    Article  PubMed  CAS  Google Scholar 

  • Ané J-M, Lévy J, Thoquet P, Kulikova O, de Billy F, Penmetsa V, Kim D-J, Debellé F, Rosenberg C, Cook DR, Bisseling T, Huguet T, Dénarié J (2002) Genetic and cytogenetic mapping of DMI1, DMI2 and DMI3 genes of Medicago trunculata involved in Nod factor transduction, nodulation and mycorrhization. Mol. Plant Microbe Interactions 15:1108–1118

    Google Scholar 

  • Ané J-M, Kiss GB, Riely BK, Penmetsa RV, Oldroyd GED, Ayax C, Lévy J, Debellé F, Baek J-M, Kalo P, Rosenberg C, Roe BA, Long SR, Dénarié J, Cook DR (2004) Medicago truncatula DMI1 required for bacterial and fungal symbioses in legumes. Science 303:1364–1367

    Article  PubMed  CAS  Google Scholar 

  • Ardourel M, Demont N, Debellé F, Maillet F, de Billy F, Promé J-C, Dénarié J, Truchet G (1994) Rhizobium meliloti lipooligosaccharide nodulation factors: different structural requirements for bacterial entry into target root hair cells and induction of plant symbiotic developmental responses. Plant Cell 6:1357–1374

    Article  PubMed  CAS  Google Scholar 

  • Ausmees N, Kobayashi H, Deakin WJ, Marie C, Krishnan HB, Broughton WJ, Perret X (2004) Characterization of NopP, a type III secreted effector of Rhizobium sp. strain NGR234. J Bacteriol 186:4774–4780

    Article  PubMed  CAS  Google Scholar 

  • Bartsev AV, Boukli NM, Deakin WJ, Staehelin C, Broughton WJ (2003) Purification and phosphorylation of the effector protein NopL from Rhizobium sp. NGR234. FEBS Lett 554:271–274

    Article  PubMed  CAS  Google Scholar 

  • Bartsev AV, Deakin WJ, Boukli NM, McAlvin CB, Stacey G, Malnoë P, Broughton WJ, Staehelin C (2004) NopL, an effector protein of Rhizobium sp. NGR234, thwarts activation of plant defense reactions. Plant Physiol 134:871–879

    Article  PubMed  CAS  Google Scholar 

  • Battisti L, Lara JC, Leigh JA (1992) Specific oligosaccharide form of the Rhizobium meliloti exopolysaccharide promotes nodule invasion in alfalfa. Proc Natl Acad Sci USA 89:5625–5629

    PubMed  CAS  Google Scholar 

  • Bec-Ferté M-P, Krishnan HB, Savagnac A, Pueppke SG, Promé J-C (1996) Rhizobium fredii synthesizes an array of lipooligosaccharides, including a novel compound with glucose inserted into the backbone of the molecule. FEBS Lett 393:273–279

    Article  PubMed  Google Scholar 

  • Becquart-de Kozak I, Reuhs BL, Buffard D, Breda C, Kim JS, Esnault R, Kondorosi A (1997) Role of the K-antigen subgroup of capsular polysaccharides in the early recognition process between Rhizobium meliloti and alfalfa leaves. Mol Plant Microbe Interact 10:114–123

    CAS  Google Scholar 

  • Bladergroen MR, Spaink HP (1998) Genes and signal molecules involved in the rhizobia-leguminoseae symbiosis. Curr Opin Plant Biol 1:353–359

    Article  PubMed  CAS  Google Scholar 

  • Bogdanove AJ, Beer SV, Bonas U, Boucher CA, Collmer A, Coplin DL, Cornelis GR, Huang H-C, Hutcheson SW, Panopoulos NJ, van Gijsegem F (1996) Unified nomenclature for broadly conserved hrp genes of phytopathogenic bacteria. Mol Microbiol 20:681–683

    Article  PubMed  CAS  Google Scholar 

  • Bono J-J, Riond J, Nicolaou KC, Bockovich NJ, Estevez VA, Cullimore JV, Ranjeva R (1995) Characterization of a binding site for chemically synthesized lipooligosaccharidic NodRm factors in particulate fractions prepared from roots. Plant J 7:253–260

    Article  PubMed  CAS  Google Scholar 

  • Breedveld MW, Cremers HCJC, Batley M, Posthumus MA, Zevenhuizen LPTM, Wijffelman CA, Zehnder AJB (1993) Polysaccharide synthesis in relation to nodulation behavior of Rhizobium leguminosarum. J Bacteriol 175:750–757

    PubMed  CAS  Google Scholar 

  • Broughton WJ, Jabbouri S, Perret X (2000) Keys to symbiotic harmony. J Bacteriol 182:5641–5652

    Article  PubMed  CAS  Google Scholar 

  • Broughton WJ, Zhang F, Perret X, Staehelin C (2003) Signals exchanged between legumes and Rhizobium: agricultural uses and perspectives. Plant Soil 252:129–137

    Article  CAS  Google Scholar 

  • Büttner D, Bonas U (2003) Common infection strategies of plant and animal pathogenic bacteria. Curr Opin Plant Biol 6:312–319

    Article  PubMed  CAS  Google Scholar 

  • Campalans A, Kondorosi A, Crespi MD (2004) Enod40, a short open reading frame-containing mRNA, induces cytoplasmic localization of a nuclear RNA binding protein in Medicago trunculata. Plant Cell 16:1047–1059

    Article  PubMed  CAS  Google Scholar 

  • Campbell GRO, Reuhs BL, Walker GC (2002) Chronic intracellular infection of alfalfa nodules by Sinorhizobium meliloti requires correct lipopolysaccharide core. Proc Natl Acad Sci USA 99:3938–3943

    Article  PubMed  CAS  Google Scholar 

  • Cárdenas L, Thomas-Oates JE, Nava N, López IM, Hepler PK, Quinto C (2003) The role of Nod factor substituents in actin cytoskeleton rearrangements in Phaseolus vulgaris. Mol Plant Microbe Interact 16:326–334

    PubMed  Google Scholar 

  • Catoira R, Galera C, de Billy F, Penmetsa RV, Journet E-P, Maillet F, Rosenberg C, Cook DR, Gough C, Dénarié J (2000) Four genes of Medicago truncatula controlling components of a Nod factor transduction pathway. Plant Cell 12:1647–1666

    Article  PubMed  CAS  Google Scholar 

  • Catoira R, Timmers ACJ, Maillet F, Galera C, Penmetsa RV, Cook DR, Dénarié J, Gough C (2001) The HCL gene of Medicago truncatula controls Rhizobium-induced root hair curling. Development 128:1507–1518

    PubMed  CAS  Google Scholar 

  • Charon C, Johansson C, Kondorosi E, Kondorosi A, Crespi MD (1997) enod40 induces dedifferentiation and division of root cortical cells in legumes. Proc Natl Acad Sci USA 94:8901–8906

    Article  PubMed  CAS  Google Scholar 

  • Cheng H-P, Walker GC (1998) Succinoglycan is required for initiation and elongation of infection threads during nodulation of alfalfa by Rhizobium meliloti. J Bacteriol 180:5183–5191

    PubMed  CAS  Google Scholar 

  • Cullimore JV, Dénarié J (2003) Plant sciences. How legumes select their sweet talking symbionts. Science 302:575–578

    Article  PubMed  CAS  Google Scholar 

  • Day RB, McAlvin CB, Loh JT, Denny RL, Wood TC, Young ND, Stacey G (2000) Differential expression of two soybean apyrases, one of which is an early nodulin. Mol Plant Microbe Interact 13:1053–1070

    PubMed  CAS  Google Scholar 

  • Deakin, WJ, Marie, C, Saad, MM, Krishnan, HB, and Broughton, WJ (2005) NopA is associated with cell surface appendages produced by the Type III Secretion System of Rhizobium sp. strain NGR234. Mol Plant-Microbe Interact 18:499–507

    PubMed  CAS  Google Scholar 

  • Demont N, Ardourel M, Maillet F, Promé D, Ferro M, Promé J-C, Dénarié J (1994) The Rhizobium meliloti regulatory nodD3 and syrM genes control the synthesis of a particular class of nodulation factors N-acylated by (omega-1)-hydroxylated fatty acids. EMBO J 13:2139–2149

    PubMed  CAS  Google Scholar 

  • Dénarié J, Debellé J, Promé D (1996) Rhizobium lipo-chitooligosaccharide nodulation factors: signaling molecules mediating recognition and morphogenesis. Annu Rev Biochem 65:503–535

    Article  PubMed  Google Scholar 

  • D’Haeze W, Mergaert P, Promé J-C, Holsters M (2000) Nod factor requirements for efficient stem and root nodulation of the tropical legume Sesbania rostrata. J Biol Chem 275:15676–15684

    Article  PubMed  CAS  Google Scholar 

  • Djordjevic SP, Chen H, Batley M, Redmond JW, Rolfe BG (1987) Nitrogen fixation ability of exopolysaccharide synthesis mutants of Rhizobium sp. strain NGR234 and Rhizobium trifolii is restored by the addition of homologous exopolysaccharides. J Bacteriol 169:53–60

    PubMed  CAS  Google Scholar 

  • Downie JA, Walker SA (1999) Plant responses to nodulation factors. Curr Opin Plant Biol 2:483–489

    Article  PubMed  CAS  Google Scholar 

  • Ehrhardt DW, Wais R, Long SR (1996) Calcium spiking in plant root hairs responding to Rhizobium nodulation signals. Cell 85:673–681

    Article  PubMed  CAS  Google Scholar 

  • Endre G, Kereszt A, Kevei Z, Mihacea S, Kaló P, Kiss GB (2002) A receptor kinase gene regulating symbiotic nodule development. Nature 417:962–966

    Article  PubMed  CAS  Google Scholar 

  • Etzler ME, Kalsi G, Ewing NN, Roberts NJ, Day RB, Murphy JB (1999) A Nod factor binding lectin with apyrase activity from legume roots. Proc Natl Acad Sci USA 96:5856–5861

    Article  PubMed  CAS  Google Scholar 

  • Fang Y, Hirsch AM (1998) Studying early nodulin gene ENOD40 expression and induction by nodulation factor and cytokinin in transgenic alfalfa. Plant Physiol 116:53–68

    Article  PubMed  CAS  Google Scholar 

  • Fellay R, Perret X, Viprey V, Broughton WJ, Brenner S (1995) Organization of host-inducible transcripts on the symbiotic plasmid of Rhizobium sp. NGR234. Mol Microbiol 16:657–667

    PubMed  CAS  Google Scholar 

  • Felle HH, Kondorosi É, Kondorosi Á, Schultze M (1996) Rapid alkalinization in alfalfa root hairs in response to rhizobial lipochitoologosaccharide signals. Plant J 10:295–301

    Article  CAS  Google Scholar 

  • Felle HH, Kondorosi É, Kondorosi Á, Schultze M (1998) The role of ion fluxes in Nod factor signalling in Medicago sativa. Plant J 13:455–463

    Article  CAS  Google Scholar 

  • Feng J, Li Q, Hu H-L, Chen X-C, Hong G-F (2003) Inactivation of the nod box distal half-site allows tetrameric NodD to activate nodA transcription in an inducer-independent manner. Nucleic Acids Res 31:3143–3156

    Article  PubMed  CAS  Google Scholar 

  • Finan TM, Hirsch AM, Leigh JA, Johansen E, Kuldau GA, Deegan S, Walker GC, Signer ER (1985) Symbiotic mutants of Rhizobium meliloti that uncouple plant from bacterial differentiation. Cell 40:869–877

    Article  PubMed  CAS  Google Scholar 

  • Finnie C, Hartley NM, Findlay KC, Downie JA (1997) The Rhizobium leguminosarum prsDE genes are required for secretion of several proteins, some of which influence nodulation, symbiotic nitrogen fixation and exopolysaccharide modification. Mol Microbiol 25:135–146

    Article  PubMed  CAS  Google Scholar 

  • Fisher RF, Long SR (1993) Interactions of NodD at the nod Box: NodD binds to two distinct sites on the same face of the helix and induces a bend in the DNA. J Mol Biol 233:336–348

    Article  PubMed  CAS  Google Scholar 

  • Forsberg LS, Carlson RW (1998) The structures of the lipopolysaccharides from Rhizobium etli strains CE358 and CE359. The complete structure of the core region of R. etli lipopolysaccharides. J Biol Chem 273:2747–2757

    Article  PubMed  CAS  Google Scholar 

  • Forsberg LS, Reuhs BL (1997) Structural characterization of the K antigens from Rhizobium fredii USDA257: evidence for a common structural motif, with strain-specific variation, in the capsular polysaccharides of Rhizobium spp. J Bacteriol 179:5366–5371

    PubMed  CAS  Google Scholar 

  • Fraysse N, Jabbouri S, Treilhou M, Couderc F, Poinsot V (2002) Symbiotic conditions induce structural modifications of Sinorhizobium sp. NGR234 surface polysaccharides. Glycobiology 12:741–748

    Article  PubMed  CAS  Google Scholar 

  • Fraysse N, Couderc F, Poinsot V (2003) Surface polysaccharide involvement in establishing the Rhizobium-legume symbiosis. Eur J Biochem 270:1365–1380

    Article  PubMed  CAS  Google Scholar 

  • Freiberg C, Fellay R, Bairoch A, Broughton WJ, Rosenthal A, Perret X (1997) Molecular basis of symbiosis between Rhizobium and legumes. Nature 387:394–401

    Article  PubMed  CAS  Google Scholar 

  • Gage DJ (2004) Infection and invasion of roots by symbiotic, nitrogen-fixing rhizobia during nodulation of temperate legumes. Microbiol Mol Biol Rev 68:280–300

    Article  PubMed  CAS  Google Scholar 

  • Galibert F, Finan TM, Long SR, Pühler A, Abola P, Ampe F, Barloy-Hubler F, Barnett MJ, Becker A, Boistard P, Bothe G, Boutry M, Bowser L, Buhrmester J, Cadieu E, Capela D, Chain P, Cowie A, Davis RW, Dréano S, Federspiel NA, Fisher RF, Gloux S, Godrie T, Goffeau A, Golding B, Gouzy J, Gurjal M, Hernandez-Lucas I, Hong A, Huizar L, Hyman RW, Jones T, Kahn D, Kahn ML, Kalman S, Keating DH, Kiss E, Komp C, Lelaure V, Masuy D, Palm C, Peck MC, Pohl TM, Portetelle D, Purnelle B, Ramsperger U, Surzycki R, Thébault P, Vandenbol M, Vorhölter FJ, Weidner S, Wells DH, Wong K, Yeh K-C, Batut J (2001) The composite genome of the legume symbiont Sinorhizobium meliloti. Science 293:668–672

    Article  PubMed  CAS  Google Scholar 

  • Gehring CA, Irving HR, Kabbara AA, Parish RW, Boukli NM, Broughton WJ (1997) Rapid, plateau-like increases in intracelluar free calcium are associated with Nod-factor-induced root-hair-deformation. Mol Plant Microbe Interact 10:791–802

    CAS  Google Scholar 

  • Geurts R, Bisseling T (2002) Rhizobium Nod factor perception and signalling. Plant Cell 14:S239–S249

    PubMed  CAS  Google Scholar 

  • Glazebrook J, Walker GC (1989) A novel exopolysaccharide can function in place of the calcofluor-binding exopolysaccharide in nodulation of alfalfa by Rhizobium meliloti. Cell 56:661–672

    Article  PubMed  CAS  Google Scholar 

  • Glazebrook J, Reed JW, Reuber TL, Walker GC (1990) Genetic analyses of Rhizobium meliloti exopolysaccharides. Int J Biol Macromol 12:67–70

    Article  PubMed  CAS  Google Scholar 

  • González JE, Reuhs BL, Walker GC (1996) Low molecular weight EPS II of Rhizobium meliloti allows nodule invasion in Medicago sativa. Proc Natl Acad Sci USA 93:8636–8641

    Article  PubMed  Google Scholar 

  • González V, Bustos P, RamÍrez-Romero MA, Medrano-Soto A, Salgado H, Hernández-González I, Hernández-Celis JC, Quintero V, Moreno-Hagelsieb G, Girard L, RodrÍguez O, Flores M, Cevallos MA, Collado-Vides J, Romero D, Dávila G (2003) The mosaic structure of the symbiotic plasmid of Rhizobium etli CFN42 and its relation to other symbiotic genome compartments. Genome Biol 4:R36

    Article  PubMed  Google Scholar 

  • Göttfert M, Röthlisberger S, Kündig C, Beck C, Marty R, Hennecke H (2001) Potential symbiosis-specific genes uncovered by sequencing a 410-kilobase DNA region of the Bradyrhizobium japonicum chromosome. J Bacteriol 183:1405–1412

    Article  PubMed  Google Scholar 

  • Gresshoff PM (2003) Post-genomic insights into plant nodulation symbioses. Genome Biol 4:201

    Article  PubMed  Google Scholar 

  • He SY (1998) Type III protein secretion systems in plant and animal phathogenic bacteria. Annu Rev Phytopathol 36:363–392

    Article  PubMed  CAS  Google Scholar 

  • Hellriegel H, Wilfarth H (1888) Untersuchungen über die Stickstoffnahrung der Gramineen und Leguminosen. Beilageheft zu der Zeitschrift des Vereines für die Rübenzucker-Industrie des Deutschen Reiches K. C. Buchdruckerei der “Post”, Berlin, Germany

    Google Scholar 

  • Her G-R, Glazebrook J, Walker GC, Reinhold VN (1990) Structural studies of a novel exopolysaccharide produced by a mutant of Rhizobium meliloti strain Rm1021. Carbohydr Res 198:305–312

    Article  PubMed  CAS  Google Scholar 

  • Hirsch AM, Lum MR, Downie JA (2001) What makes the rhizobia-legume symbiosis so special? Plant Physiol 127:1484–1492

    Article  PubMed  CAS  Google Scholar 

  • Hogg B, Davies AE, Wilson KE, Bisseling T, Downie JA (2002) Competitive nodulation blocking of cv. Afghanistan pea is related to high levels of nodulation factors made by some strains of Rhizobium leguminosarum bv. viciae. Mol. Plant Microbe Interact 15:60–68

    PubMed  CAS  Google Scholar 

  • Hubber A, Vergunst AC, Sullivan JT, Hooykaas PJ and Ronson CW (2004) Symbiotic phenotypes and translocated effector proteins of the Mesorhizobium loti strain R7A VirB/D4 type IV secretion system. Mol Microbiol 54:561–574

    Article  PubMed  CAS  Google Scholar 

  • Hueck CJ (1998) Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol Mol Biol Rev 62:379–433

    PubMed  CAS  Google Scholar 

  • Kalsi G, Etzler ME (2000) Localization of a Nod factor-binding protein in legume roots and factors influencing its distribution and expression. Plant Physiol 124:1039–1048

    Article  PubMed  CAS  Google Scholar 

  • Kaneko T, Nakamura Y, Sato S, Asamizu E, Kato T, Sasamoto S, Watanabe A, Idesawa K, Ishikawa A, Kawashima K, Kimura T, Kishida Y, Kiyokawa C, Kohara M, Matsumoto M, Matsuno A, Mochizuki Y, Nakayama S, Nakazaki N, Shimpo S, Sugimoto M, Takeuchi C, Yamada M, Tabata S (2000a) Complete genome structure of the nitrogen-fixing symbiotic bacterium Mesorhizobium loti. DNA Res 7:331–338

    Article  PubMed  CAS  Google Scholar 

  • Kaneko T, Nakamura Y, Sato S, Asamizu E, Kato T, Sasamoto S, Watanabe A, Idesawa K, Ishikawa A, Kawashima K, Kimura T, Kishida Y, Kiyokawa C, Kohara M, Matsumoto M, Matsuno A, Mochizuki Y, Nakayama S, Nakazaki N, Shimpo S, Sugimoto M, Takeuchi C, Yamada M, Tabata S (2000b) Complete genome structure of the nitrogen-fixing symbiotic bacterium Mesorhizobium loti (supplement). DNA Res 7:381–406

    Article  PubMed  CAS  Google Scholar 

  • Kaneko T, Nakamura Y, Sato S, Minamisawa K, Uchiumi T, Sasamoto S, Watanabe A, Idesawa K, Iriguchi M, Kawashima K, Kohara M, Matsumoto M, Shimpo S, Tsuruoka H, Wada T, Yamada M, Tabata S (2002a) Complete genomic sequence of nitrogen-fixing symbiotic bacterium Bradyrhizobium japonicum USDA110. DNA Res 9:189–197

    Article  PubMed  Google Scholar 

  • Kaneko T, Nakamura Y, Sato S, Minamisawa K, Uchiumi T, Sasamoto S, Watanabe A, Idesawa K, Iriguchi M, Kawashima K, Kohara M, Matsumoto M, Shimpo S, Tsuruoka H, Wada T, Yamada M, Tabata S (2002b) Complete genomic sequence of nitrogen-fixing symbiotic bacterium Bradyrhizobium japonicum USDA110 (supplement). DNA Res 9:225–256

    Article  PubMed  CAS  Google Scholar 

  • Kannenberg EL, Carlson RW (2001) Lipid A and O-chain modifications cause Rhizobium lipopolysaccharides to become hydrophobic during bacteroid development. Mol Microbiol 39:379–391

    Article  PubMed  CAS  Google Scholar 

  • Kelly MN, Irving HR (2001) Nod factors stimulate plasma membrane delimited phospholipase C activity in vitro. Physiol Plant 113:461–468

    Article  CAS  Google Scholar 

  • Kelly MN, Irving HR (2003) Nod factors activate both heterotrimeric and monomeric G-proteins in Vigna unguiculata (L.) Walp. Planta 216:674–685

    PubMed  CAS  Google Scholar 

  • Kempf VAJ, Hitziger N, Riess T, Autenrieth IB (2002) Do plant and human pathogens have a common pathogenicity strategy? Trends Microbiol 10:269–275

    Article  PubMed  CAS  Google Scholar 

  • Kereszt A, Kiss E, Reuhs BL, Carlson RW, Kondorosi Á, Putnoky P (1998) Novel rkp gene clusters of Sinorhizobium meliloti involved in capsular polysaccharide production and invasion of the symbiotic nodule: the rkpK gene encodes a UDP-glucose dehydrogenase. J Bacteriol 180:5426–5431

    PubMed  CAS  Google Scholar 

  • Kiss E, Kereszt A, Barta F, Stephens S, Reuhs BL, Kondorosi Á, Putnoky P (2001) The rpk-3 gene region of Sinorhizobium meliloti Rm 41 contains strain-specific genes that determine K Antigen structure. Mol Plant Microbe Interact 14:1395–1403

    PubMed  CAS  Google Scholar 

  • Kobayashi H, Naciri-Graven Y, Broughton WJ, Perret X (2004) Flavonoids induce temporal shifts in gene-expression of nod-box controlled loci in Rhizobium sp. NGR234. Mol Microbiol 51:335–347

    Article  PubMed  CAS  Google Scholar 

  • Kouchi H, Takane K-I, So RB, Ladha JK, Reddy PM (1999) Rice ENOD40: isolation and expression analysis in rice and transgenic soybean root nodules. Plant J 18:121–129

    Article  PubMed  CAS  Google Scholar 

  • Krause A, Doerfel A, Göttfert M (2002) Mutational and transcriptional analysis of the type III secretion system of Bradyrhizobium japonicum. Mol Plant Microbe Interact 15:1228–1235

    PubMed  CAS  Google Scholar 

  • Krishnan HB (2002) NolX of Sinorhizobium fredii USDA257, a type III-secreted protein involved in host range determination, is localized in the infection threads of cowpea (Vigna unguiculata [L.] Walp) and soybean (Glycine max [L.] Merr.) nodules. J Bacteriol 184:831–839

    Article  PubMed  CAS  Google Scholar 

  • Krishnan HB, Lorio J, Kim WS, Jiang G, Kim KY, DeBoer M, Pueppke SG (2003) Extracellular proteins involved in soybean cultivar-specific nodulation are associated with pilus-like surface appendages and exported by a type III protein secretion system in Sinorhizobium fredii USDA257. Mol Plant Microbe Interact 16:617–625

    PubMed  CAS  Google Scholar 

  • Leigh JA, Coplin DL (1992) Exopolysaccharides in plant-bacterial interactions. Annu Rev Microbiol 46:307–346

    Article  PubMed  CAS  Google Scholar 

  • Leigh JA, Lee CC (1988) Characterization of polysaccharides of Rhizobium meliloti exo mutants that form ineffective nodules. J Bacteriol 170:3327–3332

    PubMed  CAS  Google Scholar 

  • Leigh JA, Singer ER, Walker GC (1985) Exopolysaccharide-deficient mutants of Rhizobium meliloti that form ineffective nodules. Proc Natl Acad Sci USA 82:6231–6235

    PubMed  CAS  Google Scholar 

  • Levery SB, Zhan H, Lee CC, Leigh JA, Hakomori S-I (1991) Structural analysis of a second acidic exopolysaccharide of Rhizobium meliloti that can function in alfalfa root nodule invasion. Carbohydr Res 210:339–347

    Article  PubMed  CAS  Google Scholar 

  • Lévy J, Bres C, Geurts R, Chalhoub B, Kulikova O, Duc G, Journet E-P, Ané J-M, Lauber E, Bisseling T, Dénarié J, Rosenberg C, Debellé F (2004) A putative Ca2+ and calmodulin-dependent protein kinase required for bacterial and fungal symbioses. Science 303:1361–1364

    Article  PubMed  CAS  Google Scholar 

  • Limpens E, Franken C, Smit P, Willemse J, Bisseling T, Geurts R (2003) LysM domain receptor kinases regulating rhizobial Nod factor-induced infection. Science 302:630–633

    Article  PubMed  CAS  Google Scholar 

  • López-Lara IM, Kafetzopoulos D, Spaink HP, Thomas-Oates JE (2001) Rhizobial NodL O-acetyl transferase and NodS N-methyl transferase functionally interfere in production of modified Nod factors. J Bacteriol 183:3408–3416

    Article  PubMed  Google Scholar 

  • Madsen EB, Madsen LH, Radutoiu S, Olbryt M, Rakwalska M, Szczyglowski K, Sato S, Kaneko T, Tabata S, Sandal N, Stougaard J (2003) A receptor kinase gene of the LysM type is involved in legume perception of rhizobial signals. Nature 425:637–640

    Article  PubMed  CAS  Google Scholar 

  • Marie C, Deakin WJ, Viprey V, Kopcinska J, Golinowski W, Krishnan HB, Perret X, Broughton WJ (2003) Characterization of Nops, nodulation outer proteins, secreted via the type III secretion system of NGR234. Mol Plant Microbe Interactions 16:743–751

    CAS  Google Scholar 

  • Marie C, Deakin WJ, Ojanen-Reuhs T, Diallo E, Reuhs BL, Broughton WJ, Perret X (2004) TtsI, a key regulator of Rhizobium species NGR234, is required for type III-dependent protein secretion and synthesis of rhamnose-rich polysaccharides. Mol Plant Microbe Interact 17:958–966

    PubMed  CAS  Google Scholar 

  • Mergaert P, van Montagu M, Promé J-C, Holsters M (1993) Three unusual modifications, a D-arabinosyl, an N-methyl, and a carbamoyl group, are present on the Nod factors of Azorhizobium caulinodans strain ORS571. Proc Natl Acad Sci USA 90:1551–1555

    PubMed  CAS  Google Scholar 

  • Miller DD, de Ruijter NCA, Bisseling T, Emons AMC (1999) The role of actin in root hair morphogenesis: studies with lipochioto-oligosaccharide as a growth stimulator and cytochalasin as an actin perturbing drug. Plant J 17:141–154

    Article  CAS  Google Scholar 

  • Mitra RM, Shaw SL, Long SR (2004) Six nonnodulating plant mutants defective for Nod factor-induced transcriptional changes associated with the legume-rhizobia symbiosis. Proc Natl Acad Sci USA 101:10217–10222

    Article  PubMed  CAS  Google Scholar 

  • Nagai H, Roy CR (2003) Show me the substrates: modulation of host cell function by type IV secretion systems. Cell Microbiol 5:373–383

    Article  PubMed  CAS  Google Scholar 

  • Niebel A, Bono J-J, Ranjeva R, Cullimore JV (1997) Identification of a high affinity binding site for lipo-oligosaccharidic NodRm factors in the microsomal fraction of Medicago cell suspension cultures. Mol Plant Microbe Interact 10:132–134

    CAS  Google Scholar 

  • Niehaus K, Kapp D, Pühler A (1993) Plant defence and delayed infection of alfalfa meliloti mutant. Planta 190:415–425

    Article  CAS  Google Scholar 

  • Oldroyd GED, Downie JA (2004) Calcium, kinases and nodulation signalling in legumes. Nat Rev Mol Cell Biol 5:566–576

    Article  PubMed  CAS  Google Scholar 

  • Olsthoorn MM, López-Lara IM, Petersen BO, Bock K, Haverkamp J, Spaink HP, Thomas-Oates JE (1998) Novel branched Nod factor structure results from alpha-(1→3) fucosyl transferase activity: the major lipo-chitin oligosaccharides from Mesorhizobium loti strain NZP2213 bear an alpha-(1→3) fucosyl substituent on a nonterminal backbone residue. Biochemistry 37:9024–9032

    Article  PubMed  CAS  Google Scholar 

  • Ovtsyna AO, Schultze M, Tikhonovich IA, Spaink HP, Kondorosi É, Kondorosi Á, Staehelin C (2000) Nod Factors of Rhizobium leguminosarum bv. viciae and their hydrolyzed in vitro by plant chitinases at different rates. Mol Plant Microbe Interact 13:799–807

    PubMed  CAS  Google Scholar 

  • Pacios-Bras C, van der Burgt YEM, Deelder AM, Vinuesa P, Werner D, Spaink HP (2002) Novel lipochitin oligosaccharide structures produced by Rhizobium etli KIM5 s. Carbohydr Res 337:1193–1202

    Article  PubMed  CAS  Google Scholar 

  • Parniske M, Downie JA (2003) Plant biology: locks, keys and symbioses. Nature 425:569–570

    Article  PubMed  CAS  Google Scholar 

  • Pellock BJ, Cheng H-P, Walker GC (2000) Alfalfa root nodule invasion efficiency is dependent on Sinorhizobium meliloti polysaccharides. J Bacteriol 182:4310–4318

    Article  PubMed  CAS  Google Scholar 

  • Perret X, Freiberg C, Rosenthal A, Broughton WJ, Fellay R (1999) High-resolution transcriptional analysis of the symbiotic plasmid of Rhizobium sp. NGR234. Mol Microbiol 32:415–425

    Article  PubMed  CAS  Google Scholar 

  • Perret X, Staehelin C, Broughton WJ (2000) Molecular basis of symbiotic promiscuity. Microbiol Mol Biol Rev 64:180–201

    Article  PubMed  CAS  Google Scholar 

  • Ponting CP, Aravind L, Schultz J, Bork P, Koonin EV (1999) Eukaryotic signalling domain homologues in archaea and bacteria. Ancient ancestry and horizontal gene transfer. J Mol Biol 289:729–745

    Article  PubMed  CAS  Google Scholar 

  • Poupot R, Martinez-Romero E, Promé J-C (1993) Nodulation factors from Rhizobium tropici are sulfated or nonsulfated chitopentasaccharides containing an N-methyl-N-acylglucosaminyl terminus. Biochemistry 32:10430–10435

    Article  PubMed  CAS  Google Scholar 

  • Poupot R, Martinez-Romero E, Gautier N, Promé J-C (1995) Wild type Rhizobium etli, a bean symbiont, produces acetyl-fucosylated, N-methylated, and carbamoylated nodulation factors. J Biol Chem 270:6050–6055

    Article  PubMed  CAS  Google Scholar 

  • Price NP, ReliĆ B, Talmont F, Lewin A, Promé D, Pueppke SG, Maillet F, Dénarié J, Promé J-C, Broughton WJ (1992) Broad-host-range Rhizobium species strain NGR234 secretes a family of carbamoylated, and fucosylated, nodulation signals that are O-acetylated or sulphated. Mol Microbiol 6:3575–3584

    PubMed  CAS  Google Scholar 

  • Pringet J-L, Journet E-P, Barker DG (1998) Rhizobium Nod factor signaling: evidence for a G Protein-mediated transduction mechanism. Plant Cell 10:659–671

    Article  Google Scholar 

  • Pueppke SG, Broughton WJ (1999) Rhizobium sp. strain NGR234 and R. fredii USDA257 share exceptionally broad, nested host ranges. Mol Plant Microbe Interact 12:293–318

    PubMed  CAS  Google Scholar 

  • Pühler A, Arlat M, Becker A, Göttfert M, Morrissey JP, O’Gara F (2004) What can bacterial genome research teach us about bacteria-plant interactions? Curr Opin Plant Biol 7:137–147

    Article  PubMed  CAS  Google Scholar 

  • Putnoky P, Petrovics G, Kereszt A, Grosskopf E, Ha DTC, Banfalvi Z, Kondorosi Á (1990) Rhizobium meliloti lipopolysaccharide and exopolysaccharide can have the same function in the plant-bacterium interaction. J Bacteriol 172:5450–5458

    PubMed  CAS  Google Scholar 

  • Radutoiu S, Madsen LH, Madsen EB, Felle HH, Umehara Y, Gronlund M, Sato S, Nakamura Y, Tabata S, Sandal N, Stougaard J (2003) Plant recognition of symbiotic bacteria requires two LysM receptor-like kinases. Nature 425:585–592

    Article  PubMed  CAS  Google Scholar 

  • Ramu SK, Peng H-M, Cook DR (2002) Nod factor induction of reactive oxygen species production is correlated with expression of the early Nodulin gene rip1 in Medicago trunculata. Mol Plant Microbe Interact 15:522–528

    PubMed  CAS  Google Scholar 

  • Recourt K, Schripsema J, Kijne JW, van Brussel AAN, Lugtenberg BJJ (1991) Inoculation of Vicia sativa subsp. nigra roots with Rhizobium leguminosarum biovar viciae results in release of nod gene activating flavanones and chalcones. Plant Mol Biol 16:841–852

    Article  PubMed  CAS  Google Scholar 

  • Reinhold BB, Chan SY, Reuber TL, Marra A, Walker GC, Reinhold VN (1994) Detailed structural characterization of succinoglycan, the major exopolysaccharide of Rhizobium meliloti Rm1021. J Bacteriol 176:1997–2002

    PubMed  CAS  Google Scholar 

  • ReliĆ B, Perret X, Estrada-García MT, Kopcinska J, Golinowski W, Krishnan HB, Pueppke SG, Broughton WJ (1994a) Nod factors of Rhizobium are a key to the legume door. Mol Microbiol 13:171–178

    PubMed  Google Scholar 

  • ReliĆ B, Staehelin C, Fellay R, Jabbouri S, Boller T, Broughton WJ (1994b) Do Nodfactor levels play a role in host-specificity? In: Kiss GB, Endre G (eds) Proceedings of the 1st European nitrogen fixation conference. Officina Press, Sezged, Hungary, pp 69–75

    Google Scholar 

  • Reuber TL, Walker GC (1993) Biosynthesis of succinoglycan, a symbiotically important exopolysaccharide of Rhizobium meliloti. Cell 74:269–280

    Article  PubMed  CAS  Google Scholar 

  • Reuber TL, Long SR, Walker GC (1991) Regulation of Rhizobium meliloti exo genes in free-living cells and in planta examined by using TnphoA fusions. J Bacteriol 173:426–434

    PubMed  CAS  Google Scholar 

  • Reuhs BL, Carlson RW, Kim JS (1993) Rhizobium fredii and Rhizobium meliloti produce 3-deoxy-D-manno-2-octulosonic acid-containing polysaccharides that are structurally analogous to group II K antigens (capsular polysaccharides) found in Escherichia coli. J Bacteriol 175:3570–3580

    PubMed  CAS  Google Scholar 

  • Reuhs BL, Williams MNV, Kim JS, Carlson RW, Côté F (1995) Suppression of the Fix-phenotype of Rhizobium meliloti exoB mutants by lpsZ is correlated to a modified expression of the K polysaccharide. J Bacteriol 177:4289–4296

    PubMed  CAS  Google Scholar 

  • Reuhs BL, Geller DP, Kim JS, Fox JE, Kolli VSK, Pueppke SG (1998) Sinorhizobium fredii and Sinorhizobium meliloti produce structurally conserved lipopolysaccharides and strain-specific K antigens. Appl Environ Microbiol 64:4930–4938

    PubMed  CAS  Google Scholar 

  • Roche P, Debellé F, Maillet F, Lerouge P, Faucher C, Truchet G, Dénarié J, Promé J-C (1991) Molecular basis of symbiotic host specificity in Rhizobium meliloti: nodH and nodPQ genes encode the sulfation of lipo-oligosaccharide signals. Cell 67:1131–1143

    Article  PubMed  CAS  Google Scholar 

  • Rossier O, van den Ackerveken G, Bonas U (2000) HrpB2 and HrpF from Xanthomonas are type III-secreted proteins and essential for pathogenicity and recognition by the host plant. Mol Microbiol 38:828–838

    Article  PubMed  CAS  Google Scholar 

  • Saad, MM, Kobayashi, H, Marie, C, Brown, IR, Mansfield, JW, Broughton, WJ, and Deakin, WJ (2005) NopB, a type III secreted protein of Rhizobium sp. strain NGR234, is associated with pilus-like surface appendages. J Bacteriol 187: 1173–1181.

    Article  PubMed  CAS  Google Scholar 

  • Savouré A, Sallaud C, El-Turk J, Zuanazzi J, Ratet P, Schultze M, Kondorosi Á, Esnault R and Kondorosi É (1997) Distinct responses of Medicago suspension cultures and roots to Nod factors and chitin oligomers in the elicitation of defense-related responses. Plant J 11:277–287

    Article  Google Scholar 

  • Schmidt PE, Broughton WJ, Werner D (1994) Nod factors of Bradyrhizobium japonicum and Rhizobium sp. NGR234 induce flavonoid accumulation in soybean root exudate. Mol Plant Microbe Interact 7:384–390

    CAS  Google Scholar 

  • Schneider A, Walker SA, Poyser S, Sagan M, Ellis TH, Downie JA (1999) Genetic mapping and functional analysis of a nodulation-defective mutant (sym19) of pea (Pisum sativum L.). Mol Gen Genet 262:1–11

    Article  PubMed  CAS  Google Scholar 

  • Schultze M, Kondorosi A (1998) Regulation of symbiotic root nodule development. Annu Rev Genet 32:33–57

    Article  PubMed  CAS  Google Scholar 

  • Skorpil P, Saad MM, Boukli NM, Kobayashi H, Ares-Orpel F, Broughton WJ, Deakin WJ (2005) NopP, a phosphorylated effector of Rhizobium sp. strain NGR234, is a major determinant of nodulation of the tropical legumes Flemingia congesta and Tephrosia vogelii. Mol Microbiol 57:1304–1317

    Article  PubMed  CAS  Google Scholar 

  • Spaink HP (2000) Root nodulation and infection factors produced by rhizobial bacteria. Annu Rev Microbiol 54:257–288

    Article  PubMed  CAS  Google Scholar 

  • Staehelin C, Schultze M, Kondorosi Á, Kondorosi É (1995) Lipo-chitooligosaccharide nodulation signals from Rhizobium meliloti induce their rapid degradation by the host plant Alfalfa. Plant Physiol 108:1607–1614

    PubMed  CAS  Google Scholar 

  • Steen A, Buist G, Leenhouts KJ, El Khattabi M, Grijpstra F, Zomer AL, Venema G, Kuipers OP, Kok J (2003) Cell wall attachment of a widely distributed peptidoglycan binding domain is hindered by cell wall constituents. J Biol Chem 278: 23874–23881

    Article  PubMed  CAS  Google Scholar 

  • Stracke S, Kistner C, Yoshida S, Mulder L, Sato S, Kaneko T, Tabata S, Sandal N, Stougaard J, Szczyglowski K, Parniske M (2002) A plant receptor-like kinase required for both bacterial and fungal symbiosis. Nature 417:959–962

    Article  PubMed  CAS  Google Scholar 

  • Streeter JG, Salminen SO, Whitmoyer RE, Carlson RW (1992) Formation of novel polysaccharides by Bradyrhizobium japonicum bacteroids in soybean nodules. Appl Environ Microbiol 58:607–613

    PubMed  CAS  Google Scholar 

  • Van Workum WAT, van Slageren S, van Brussel AAN, Kijne JW (1998) Role of exopolysaccharides of Rhizobium leguminosarum bv. viciae as host plant-specific molecules required for infection thread formation during nodulation of Vicia sativa. Mol Plant Microbe Interact 11:1233–1241

    Google Scholar 

  • Vinardell JM, Ollero FJ, Hidalgo Á, López-Baena FJ, Medina C, Ivanov-Vangelov K, Parada M, Madinabeitia N, del Rosario Espuny M, Bellogín RA, Camacho M, Rodríguez-Navarro D-N, Soria-Díaz ME, Gil-Serrano AM, Ruiz-Sainz JE (2004) NolR regulates diverse symbiotic signals of Sinorhizobium fredii HH103. Mol Plant Microbe Interact 17:676–685

    PubMed  CAS  Google Scholar 

  • Viprey V, Del Greco A, Golinowski W, Broughton WJ, Perret X (1998) Symbiotic implications of type III protein secretion machinery in Rhizobium. Mol Microbiol 28:1381–1389

    Article  PubMed  CAS  Google Scholar 

  • Vlassak KM, Luyten E, Verreth C, van Rhijn P, Bisseling T, Vanderleyden J (1998) The Rhizobium sp. BR816 nodO gene can function as a determinant for nodulation of Leucaena leucocephala, Phaseolus vulgaris, and Trifolium repens by a diversity of Rhizobium spp. Mol Plant Microbe Interact 11:383–392

    CAS  Google Scholar 

  • Walker SA, Downie JA (2000) Entry of Rhizobium leguminosarum bv viciae into root hairs requires minimal Nod factor specificity, but subsequent infection thread growth requires nodO or nodE. Mol Plant Microbe Interact 13:754–762

    PubMed  CAS  Google Scholar 

  • Walker SA, Viprey V, Downie JA (2000) Dissection of nodulation signaling using pea mutants defective for calcium spiking induced by nod factors and chitin oligomers. Proc Natl Acad Sci USA 97:13413–13418

    Article  PubMed  CAS  Google Scholar 

  • Wang L-X, Wang Y, Pellock BJ, Walker GC (1999) Structural characterization of the symbiotically important low-molecular-weight succinoglycan of Sinorhizobium meliloti. J Bacteriol 181:6788–6796

    PubMed  CAS  Google Scholar 

  • Whitfield C, Valvano MA (1993) Biosynthesis and expression of cell-surface polysaccharides in gram-negative bacteria. Adv Microb Physiol 35:135–246

    Article  PubMed  CAS  Google Scholar 

  • Yang W-C, de Blank C, Meskiene I, Hirt H, Bakker J, van Kammen A, Franssen H, Bisseling T (1994) Rhizobium Nod factors reactivate the cell-cycle during infection and nodule primordium formation, but the cycle is only completed in primordium formation. Plant Cell 6:1415–1426

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Skorpil, P., Broughton, W.J. (2005). Molecular Interactions between Rhizobium and Legumes. In: Overmann, J. (eds) Molecular Basis of Symbiosis. Progress in Molecular and Subcellular Biology, vol 41. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-28221-1_8

Download citation

Publish with us

Policies and ethics