Skip to main content

Carbon Nanotube Electronics and Optoelectronics

  • Chapter
Applied Physics of Carbon Nanotubes

Part of the book series: NanoScience and Technology ((NANO))

Abstract

In this chapter, we review progress to date in carbon nanotube electronics and optoelectronics. We discuss the underlying physics of CNT-FETs, highlighting the similarities and differences relative to conventional silicon metal-oxide-semiconductor field-effect transistors (MOSFETs), and we examine how these affect CNT-FET electrical characteristics. As device scaling is the key technology driver in today's semiconductor technology, we explore how CNT-FETs behave when scaled to smaller dimensions and the impact this scaling behavior may have on their suitability for technological insertion. We look at results achieved to date on simple CNT-based circuits, and we consider the requirements of more complex architectures. Finally, we discuss the optoelectronic properties of CNTs and show that CNT-FETs can also be used as light emitting and light decoding devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Carbon Nanotubes, M. Dresselhaus, G. Dresselhaus, and Ph. Avouris, Eds., Springer-Verlag (Berlin, 2001)

    Google Scholar 

  2. M.S. Dresselhaus, G. Dresselhaus, and R. Saito, Phys. Rev. B 45, 6234 (1992)

    Article  Google Scholar 

  3. J.W. Mintmire, B.I. Dunlap, and C.T. White, Phys. Rev. Lett. 68, 631 (1992)

    Article  PubMed  Google Scholar 

  4. R. Landauer, Philos. Mag. 21, 863 (1970)

    Google Scholar 

  5. T. Ando, J. Phys. Soc. Japan 66, 1066 (1996)

    Article  Google Scholar 

  6. D. Mann, A. Javey, J. Kong, Q. Wang, and H. Dai, Nano Lett. 3, 1541 (2003)

    Article  Google Scholar 

  7. Z. Yao, C.L. Kane, and C. Dekker, Phys. Rev. Lett., 61, 2941 (2000)

    Article  Google Scholar 

  8. J.-Y. Park, S. Rosenblatt, Y. Yaish, V. Sazonova, H. Ustunel, S. Braig, T.A. Arias, D.W. Brouwer, and P.L. McEuen, Nano Lett. 4, 517 (2004)

    Article  Google Scholar 

  9. A. Javey, J. Guo, M. Paulson, Q. Wang, D. Mann, M. Lundstrom and H. Dai, Phys. Rev. Lett. 92, 106804–1 (2004)

    Article  PubMed  Google Scholar 

  10. P.G. Collins, M. Hersam, M. Arnold, R. Martel, and Ph. Avouris, Phys. Rev. Lett. 86, 3128 (2001)

    Article  PubMed  Google Scholar 

  11. S.J. Wind, J. Appenzeller, and Ph. Avouris, Phys. Rev. Lett. 91, 058301 (2003)

    Article  PubMed  Google Scholar 

  12. A. Javey, J. Guo, Q. Wang, M. Lundstrom, and H.J. Dai, Nature 424, 654 (2003)

    Article  PubMed  Google Scholar 

  13. Y. Yaish, J.Y. Park, S. Rosenblatt, V. Sazonova, M. Brink, and P.L. McEuen, Phys. Rev. Lett. 92, 046401 (2004)

    Article  PubMed  Google Scholar 

  14. F. Leonard, and J. Tersoff, Phys. Rev. Lett. 83, 5174 (1999)

    Article  Google Scholar 

  15. Ph. Avouris, J. Appenzeller, R. Martel, and S.J. Wind, Proc. of the IEEE 91, 1772 (2003)

    Article  Google Scholar 

  16. S.J. Tans, A.R.M. Verschueren, and C. Dekker, Nature 393, 49 (1998)

    Article  Google Scholar 

  17. R. Martel, T. Schmidt, H.R. Shea, T. Hertel, and Ph. Avouris, Appl. Phys. Lett. 73, 2447 (1998)

    Article  Google Scholar 

  18. H.T. Soh, C.F. Quate, A.F. Morpurgo, C. marcus, J. Kong, and H. Dai, App. Phys. Lett. 75, 627 (1999)

    Article  Google Scholar 

  19. R. Martel, V. Derycke, C. Lavoie, J. Appenzeller, K.K. Chan, J. Tersoff, and Ph. Avouris, Phys. Rev. Lett. 87, 256805 (2001)

    Article  PubMed  Google Scholar 

  20. R. Martel, H.-S.P. Wong, K. Chan, and Ph. Avouris, in International Electron Devices Meeting 2001: IEDM Technical Digest (IEEE, Piscataway, N.J., 2001), p. 159.

    Google Scholar 

  21. P.L. McEuen, M.S. Fuhrer and H. Park, IEEE Trans. Nanotechnol. 1, 78 (2002), and references therein.

    Article  Google Scholar 

  22. M. Bockrath, J. Hone, A. Zettl, P.L. McEuen, A.G. Rinzler, and R.E. Smalley, Phys. Rev. B 61, R10606 (2000)

    Article  Google Scholar 

  23. V. Derycke, R. Martel, J. Appenzeller, and Ph. Avouris, Nano Lett. 1, 453 (2001)

    Article  Google Scholar 

  24. X. Liu, C. Lee, C. Zhou, and J. Han, Appl. Phys. Lett. 79, 3329 (2001)

    Article  Google Scholar 

  25. V. Derycke, R. Martel, J. Appenzeller, and Ph. Avouris, Appl. Phys. Lett. 80, 2773 (2002)

    Article  Google Scholar 

  26. S.J. Wind, J. Appenzeller, R. Martel, V. Derycke, and Ph. Avouris, Appl. Phys. Lett. 80, 3817 (2002)

    Article  Google Scholar 

  27. J. Appenzeller, J. Knoch, R. Martel, V. Derycke, S.J. Wind, and Ph. Avouris, IEEE Trans. Nanotechnol. 1, 184 (2002)

    Article  Google Scholar 

  28. A. Javey, H. Kim, M. Brink, Q. Wang et al. Nature Materials 1, 241 (2002)

    Article  PubMed  Google Scholar 

  29. M. Radosavljevic, J. Appenzeller, Ph. Avouris, and J. Knoch, Appl. Phys. Lett. 84, 3693 (2004)

    Article  Google Scholar 

  30. P.G. Collins, M.S. Arnold, and Ph. Avouris, Science 292, 706 (2001)

    Article  PubMed  Google Scholar 

  31. Y._-C. Tseng, P. Xuan, A. Javey, R. Malloy, Q. Wang, J. Bokor, H. Dai, Nano Lett. 4, 123 (2004)

    Article  Google Scholar 

  32. E.S. Snow, J.P. Novak, P.M. Campbell, and D. Park, Appl. Phys. Lett. 82, 2145 (2003)

    Article  Google Scholar 

  33. A. Rochefort, M. Di Ventra, and Ph. Avouris, Appl. Phys. Lett. 78, 2521 (2001)

    Article  Google Scholar 

  34. S.M. Sze, Physics of Semiconductor Devices, 2nd edition (John Wiley & Sons, 1981)

    Google Scholar 

  35. A. Javey, Q. Wang, W. Kim, and H. Dai, in International Electron Devices Meeting 2003: IEDM Technical Digest (IEEE, Piscataway, N.J., 2003), p. 741.

    Google Scholar 

  36. J. Appenzeller, M. Radosavljevic, J. Knoch, and Ph. Avouris, Phys. Rev. Lett. 92, 048301 (2004)

    Article  PubMed  Google Scholar 

  37. J. Appenzeller, J. Knoch, V. Derycke, R. Martel, S.J. Wind, and Ph. Avouris, Phys. Rev. Lett. 89, 126801 (2002)

    Article  PubMed  Google Scholar 

  38. S. Heinze, J. Tersoff, R. Martel, V. Derycke, J. Appenzeller, and Ph. Avouris, Phys. Rev. Lett. 89, 106801 (2002)

    Article  PubMed  Google Scholar 

  39. M. Freitag, M. Radosavljevic, Y.X. Zhou, A.T. Johnson, and W.F. Smith, Appl. Phys. Lett. 79, 3326 (2001)

    Article  Google Scholar 

  40. T. Durkop, S.A. Getty, E. Cobas, and M.S. Fuhrer, Nano Lett. 4, 35 (2004)

    Article  Google Scholar 

  41. S. Rosenblatt, Y. Yaish, J. Park, J. Gore, V. Sazanova, and P.L. McEuen, Nano Lett. 2, 869 (2002)

    Article  Google Scholar 

  42. A. Thess, R. Lee, P. Nikolaev. H. Dai, P. Petit, J. Robert, X. Chunhui, L.Y. Hee, K. Seong Gon, A.G. Rinzler, and D.T. Colbert, Science 273, 483 (1996)

    PubMed  Google Scholar 

  43. P. Nikolaev, M.J. Bronikowski, R.K. Bradley, F. Rohmund, D.T. Colbert, K.A. Smith, and R.E. Smalley, Chem. Phys. Lett. 313, 91 (1999)

    Article  Google Scholar 

  44. International Technology Roadmap for Semiconductors, 2003 edition. (See also http://public.itrs.net)

    Google Scholar 

  45. S. Heinze, J. Tersoff and Ph. Avouris, Appl. Phys. Lett. 83, 5038 (2003)

    Article  Google Scholar 

  46. Y.-M. Lin, J. Appenzeller and Ph. Avouris, Nano Lett. 4, 947 (2004)

    Article  Google Scholar 

  47. X.D. Cui, M. Freitag, R. Martel, L. Brus, and Ph. Avouris, Nano Lett. 3, 783 (2003)

    Article  Google Scholar 

  48. S. Heinze, M. Radosavljevic, J. Tersoff and Ph. Avouris, Phys. Rev. B 68, 235418 (2003)

    Article  Google Scholar 

  49. T. Rueckes, K. Kim, E. Joselevich, G.Y. Tseng, C.L. Cheung, and C.M. Lieber, Science 289, 94 (2000)

    Article  PubMed  Google Scholar 

  50. J. Kong, N.R. Franklin, C.W. Zhou, M.G. Chapline, S. Peng, K.J. Cho, and H.J. Dai, Science, 287, 622 (2000)

    Article  PubMed  Google Scholar 

  51. A. Bachtold, P. Hadley, T. Nakanishi, and C. Dekker, Science 294, 1317 (2001)

    Article  PubMed  Google Scholar 

  52. A. Javey, Q. Wang, A. Ural, Y.M. Li, and H.J. Dai, Nano Lett. 2, 929 (2002)

    Article  Google Scholar 

  53. D.J. Frank, and J. Appenzeller, IEEE Electr. Device Lett. 25, 34 (2004)

    Article  Google Scholar 

  54. T.G. Pedersen, Phys. Rev. B 67, 073401 (2003)

    Article  Google Scholar 

  55. C.L. Kane and E.J. Mele, Phys. Rev. Lett. 90, 207401 (2003)

    Article  PubMed  Google Scholar 

  56. C.D. Spataru, S. Ismail-Beigi, L.X. Benedict, and S.G. Louie, Phys. Rev. Lett. (2004)

    Google Scholar 

  57. V. Perebeinos, J. Tersoff, and Ph. Avouris, Phys. Rev. Lett. 92, 257402 (2004)

    Article  PubMed  Google Scholar 

  58. M. Ishida, S. Mizuno, T. Yoshihino, Y. Saito, and A. Nakamura, J. Phys. Soc. Jpn. 68, 3131 (1999)

    Article  Google Scholar 

  59. R. Saito and H. Kataura in M. Dresslahus, G. Dresselhaus and Ph. Avouris, Eds., Carbon Nanotubes, Springer-Verlag (Berlin, 2001), pages 213–246.

    Google Scholar 

  60. M.J. O'Connell, S.M. Bachilo, C.B. Huffman, V.C. Moore, M.S. Strano, E.H. Haroz, K.L. Rialon, P.J. Boul, W.H. Noon, C. Kittrell, J. Ma, R.H. Hauge, R.E. Smalley, and R.B. Weisman, Science 297, 2361 (2002)

    Article  Google Scholar 

  61. S.M. Bachilo, M.S. Strano, C. Kittrell, R.H. Hauge, R.E. Smalley, and R.B. Weisman, Science 298, 2361 (2002)

    Article  PubMed  Google Scholar 

  62. A. Hagen and T. Hertel, Nano Lett. 3, 383 (2003)

    Article  Google Scholar 

  63. A. Hartschuh, H.N. Pedrosa, L. Novotny and T.D. Krauss, Science 301, 1354 (2003)

    Article  PubMed  Google Scholar 

  64. J. Lefebvre, Y. Homma, and P. Finnie, Phys. Rev. Lett. 90, 217401 (2003)

    Article  PubMed  Google Scholar 

  65. G. Strinati, Phys. Rev. B 29, 5718 (1984)

    Article  Google Scholar 

  66. O.J. Korovyanlo, C.-X Sheng, Z.V. Vardeny, A.B. Dalton, and R.H. Baughman,. Phys. Rev. Lett. 92, 017403 (2004)

    Article  PubMed  Google Scholar 

  67. X. Qiu, M. Freitag, V. Perebeinos, and Ph. Avouris, Nano Lett. 5, 749 (2005)

    Article  PubMed  Google Scholar 

  68. A. Fujuwara, Y. Matsuoka, H. Suematsu, N. Ogata, et al. Jpn. J. Appl. Phys., Part 1 40, L1229 (2001)

    Article  Google Scholar 

  69. Y. Yamada, N. Naka, N. Nagasawa, Z.M. Li, and Z.K. Tang, Physica B 323, 239 (2002)

    Article  Google Scholar 

  70. Y. Zhang and S. Iijima, Phys. Rev. Lett. 82, 3472 (1999)

    Article  Google Scholar 

  71. M. Freitag, Y. Martin, J.A. Misewich, R. Martel, and Ph. Avouris, Nano Lett. 3, 1067 (2003)

    Article  Google Scholar 

  72. J.A. Misewich, R. Martel, Ph. Avouris, J.C. Tsang, S. Heinze, and J. Tersoff, Science 300, 783 (2003)

    Article  PubMed  Google Scholar 

  73. M. Radosavljevic, S. Heinze, J. Tersoff and Ph. Avouris, Appl. Phys. Lett. 83, 2435 (2003)

    Article  Google Scholar 

  74. M. Freitag, J. Chen, A. Stein, T. Tsang, J. Misewich, R. Martel, V. Perebeinos, and Ph. Avouris, Nano Lett. 4, 1063 (2004)

    Article  Google Scholar 

  75. M. Freitag, J. Chen, J. Tsang, Q. Fu, J. Liu and Ph. Avouris, Phys. Rev. Lett. 93, 076803 (2004)

    Article  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Avouris, P., Radosavljević, M., Wind, S. (2005). Carbon Nanotube Electronics and Optoelectronics. In: Rotkin, S.V., Subramoney, S. (eds) Applied Physics of Carbon Nanotubes. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-28075-8_9

Download citation

Publish with us

Policies and ethics