Skip to main content

Fluorescence Spectroscopy of Single-Walled Carbon Nanotubes

  • Chapter
Applied Physics of Carbon Nanotubes

Part of the book series: NanoScience and Technology ((NANO))

Abstract

An overview is presented of basic and applied aspects of the fluorescent photoluminescence from single-walled carbon nanotubes (SWNT). This fluorescence was first discovered in aqueous surfactant suspensions of SWNT that had been processed for enrichment in individual, unbundled nanotubes. Spectrofluorimetric measurements of emission intensity as a function of excitation and emission wavelengths revealed a rich pattern of peaks representing distinct (n,m) structural species. Careful analysis allowed each of these peaks to be assigned to a specific semiconducting (n,m) species. This spectral assignment provided a large body of precise optical transition energies for a significant range of tube diameters and chiralities. Important patterns of electronic structure emerged showing the related properties of nanotubes within “families” (sharing the same n-m value) and “tribes” (sharing the same mod(n-m,3) value). The results also allowed construction of an empirical “Kataura plot,” useful for guiding experiments, that gives optical transition energies as a function of nanotube diameter for semiconducting species. In surfactantsuspended samples, optical transition energies are found to depend mildly on nanotube environment. Spectral line shapes reveal the predominant excitonic character of optical excitations in SWNT and provide information on environmental heterogeneity and on exciton dephasing rates. Nanotube fluorescence is quenched by aggregation, chemical derivatization, and by acidification in some aqueous suspensions. Fluorimetry offers a powerful method for determining the (n,m) composition of mixed nanotube samples. Instrumental methods for such fluorimetric analysis are discussed and compared. Finally, the unusual near-infrared emission from SWNT can be exploited to allow selective optical detection and imaging of nanotubes in complex environments. Early results are presented showing how this approach can be used to image the locations of nanotubes inside biological cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Saito, G. Dresselhaus, and M.S. Dresselhaus, Physical Properties of Carbon Nanotubes, Imperial College Press (London), 1998.

    Google Scholar 

  2. M.S. Dresselhaus, G. Dresselhaus, and Ph. Avouris, ed., Carbon Nanotubes: Synthesis, Structure, Properties, and Applications, Springer-Verlag (New York), 2001.

    Google Scholar 

  3. S. Reich, J. Janina, and C. Thomsen, Carbon Nanotubes: Basic Concepts and Physical Properties, Wiley (New York), 2004.

    Google Scholar 

  4. J.W. Mintmire and C.T. White: Phys. Rev. Lett. 81, 2506 (1998)

    Article  Google Scholar 

  5. M. O'Connell, S.M. Bachilo, C.B. Huffman, V. Moore, M.S. Strano, E. Haroz, K. Rialon, P.J. Boul, W.H. Noon, C. Kittrell, J. Ma, R.H. Hauge, R.B. Weisman, and R.E. Smalley: Science 297, 593 (2002)

    Article  PubMed  Google Scholar 

  6. M. Kasha: Disc. Faraday Soc. 9, 14 (1950)

    Article  Google Scholar 

  7. Y.-Z. Ma, J. Stenger, J. Zimmerman, S.M. Bachilo, R.E. Smalley, R.B. Weisman, and G.R. Fleming: J. Chem. Phys. 120, 3368 (2004)

    Article  PubMed  Google Scholar 

  8. J. Kono, G.N. Ostojic, S. Zaric, M.S. Strano, V.C. Moore, J. Shaver, and R.H. Hauge: Applied Physics A 78, 1093 (2004)

    Article  Google Scholar 

  9. A. Hagen, G. Moos, V. Talalaev, and T. Hertel: Applied Physics A 78, 1137 (2004)

    Article  Google Scholar 

  10. S.M. Bachilo, M.S. Strano, C. Kittrell, R.H. Hauge, R.E. Smalley, and R.B. Weisman: Science 298, 2361 (2002)

    Article  PubMed  Google Scholar 

  11. C.L. Kane and E.J. Mele: Phys. Rev. Lett. 90, 207401/1 (2003)

    Google Scholar 

  12. C.D. Spataru, S. Ismail-Beigi, L.X. Benedict, and S.G. Louie: Applied Physics A 78, 1129 (2004)

    Article  Google Scholar 

  13. C.D. Spataru, S. Ismail-Beigi, L.X. Benedict, and S.G. Louie: Phys. Rev. Lett. 92, 077402/1 (2004)

    Article  Google Scholar 

  14. S. Reich and C. Thomsen: Phys. Rev. B 62, 4273 (2000)

    Article  Google Scholar 

  15. R. Saito, G. Dresselhaus, and M.S. Dresselhaus: Phys. Rev. B 61, 2981 (2000)

    Article  Google Scholar 

  16. S. Lebedkin, F.H. Hennrich, T. Skipa, and M.M. Kappes: J. Phys. Chem. B 107, 1949 (2003)

    Article  Google Scholar 

  17. S. Lebedkin, K. Arnold, F.H. Hennrich, R. Krupke, B. Renker, and M.M. Kappes: New Journal of Physics 5, 140.1 (2003)

    Article  Google Scholar 

  18. H. Kataura, Y. Kumazawa, Y. Maniwa, I. Umezu, S. Suzuki, Y. Ohtsuka, and Y. Achiba: Synth. Met. 103, 2555 (1999)

    Article  Google Scholar 

  19. R.B. Weisman and S.M. Bachilo: Nano Lett. 3, 1235 (2003)

    Article  Google Scholar 

  20. R. Saito, A. Gruneis, G.G. Samsonidze, G. Dresselhaus, M.S. Dresselhaus, A. Jorio, L.G. Cancado, M.A. Pimenta, and A.G. Souza Filho: Applied Physics A, 1099 (2004)

    Google Scholar 

  21. S.K. Doorn, D.A. Heller, P.W. Barone, M.L. Usrey, and M.S. Strano: Applied Physics A 78, 1155 (2004)

    Google Scholar 

  22. J. Lefebvre, Y. Homma, and P. Finnie: Phys. Rev. Lett. 90, 217401/1 (2003)

    Article  Google Scholar 

  23. J. Lefebvre, J.M. Fraser, Y. Homma, and P. Finnie: Applied Physics A 78, 1107 (2004)

    Article  Google Scholar 

  24. J. Lefebvre, J.M. Fraser, P. Finnie, and Y. Homma: Phys. Rev. B 69, 075403–1 (2004)

    Article  Google Scholar 

  25. V.C. Moore, M.S. Strano, E.H. Haroz, R.H. Hauge, and R.E. Smalley: Nano Lett. 3, 1379 (2003)

    Article  Google Scholar 

  26. P. Cherukuri, S.M. Bachilo, S.H. Litovsky, and R.B. Weisman: to be published (2004)

    Google Scholar 

  27. A. Hartschuh, H.N. Pedrosa, L. Novotny, and T.D. Krauss: Science 301, 1354 (2003)

    Article  PubMed  Google Scholar 

  28. T.G. Pedersen: Phys. Rev. B 67, 073401–1 (2003)

    Article  Google Scholar 

  29. T. Ando: J. Phys. Soc. Jpn. 66, 1066 (1997)

    Article  Google Scholar 

  30. A.G. Souza Filho, A. Jorio, Hafner J.H., C.M. Lieber, R. Saito, M.A. Pimenta, G. Dresselhaus, and M.S. Dresselhaus: Phys. Rev. B 63, 241404–1 (2001)

    Article  Google Scholar 

  31. J.-S. Lauret, C. Voisin, G. Cassabois, P. Roussignol, C. Delalande, A. Filoramo, L. Capes, E. Valentin, and C. Jost: Physica E 21, 1057 (2004)

    Article  Google Scholar 

  32. M.S. Strano, C.B. Huffman, V.C. Moore, M.J. O'Connell, E.H. Haroz, J. Hubbard, M. Miller, K. Rialon, C. Kittrell, S. Ramesh, R.H. Hauge, and R.E. Smalley: J. Phys. Chem. B 107, 6979 (2003)

    Article  Google Scholar 

  33. R.B. Weisman, S.M. Bachilo, and D. Tsyboulski: Applied Physics A 78, 1111 (2004)

    Article  Google Scholar 

  34. M.F. Islam, E. Rojas, D.M. Bergey, A.T. Johnson, and A.G. Yodh: Nano Lett. 3, 269 (2003)

    Article  Google Scholar 

  35. S.M. Bachilo, L. Balzano, J.E. Herrera, F. Pompeo, D.E. Resasco, and R.B. Weisman: J. Am. Chem. Soc. 125, 11186 (2003)

    Article  Google Scholar 

  36. S. Maruyama, Y. Miyauchi, Y. Murakami, and S. Chiashi: New Journal of Physics 5, 149.1 (2003)

    Article  Google Scholar 

  37. Y. Miyauchi, S. Chiashi, Y. Murakami, Y. Hayashida, and S. Maruyama: Chem. Phys. Lett. 387, 198 (2004)

    Article  Google Scholar 

  38. R.B. Weisman: Nature Mater. 2, 569 (2003)

    Article  Google Scholar 

  39. A. Jorio, R. Saito, J.H. Hafner, C.M. Lieber, M. Hunter, T. McClure, G. Dresselhaus, and M.S. Dresselhaus: Phys. Rev. Lett. 86, 1118 (2001)

    Article  PubMed  Google Scholar 

  40. P. Cherukuri, S.M. Bachilo, S.H. Litovsky, and R.B. Weisman: J. Am. Chem. Soc. 126, 15638 (2004)

    PubMed  Google Scholar 

  41. J.A. Misewich, Ph. Avouris, R. Martel, J.C. Tsang, S. Heinze, and J. Tersoff: Science 300, 783 (2003)

    Article  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Weisman, R. (2005). Fluorescence Spectroscopy of Single-Walled Carbon Nanotubes. In: Rotkin, S.V., Subramoney, S. (eds) Applied Physics of Carbon Nanotubes. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-28075-8_7

Download citation

Publish with us

Policies and ethics