Skip to main content

Direct Growth of Single Walled Carbon Nanotubes on Flat Substrates for Nanoscale Electronic Applications

  • Chapter
Applied Physics of Carbon Nanotubes

Part of the book series: NanoScience and Technology ((NANO))

  • 1425 Accesses

Abstract

This chapter describes the growth of single walled carbon nanotubes on suitable substrates that can be directly used for device fabrication. The chapter focuses on the growth of nanotubes using chemical vapor deposition (CVD) methods. The control of diameters and orientation of the produced nanotubes is discussed. More importantly, a new “fast-heating” CVD method that can produce long and well aligned of nanotubes is described in details. The control of location and orientation offered by this method offer a great advantage for device fabrication, representing a significant advance in controlling the structures of nanoscaled materials through synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S.J. Tans, M.H. Devoret, H.J. Dai, A. Thess, R.E. Smalley, L.J. Geerligs, C. Dekker, Nature 386, 474 (1997)

    Article  Google Scholar 

  2. A. Bachtold, P. Hadley, T. Nakanishi, C. Dekker, Science 294, 1317 (2001)

    Article  PubMed  Google Scholar 

  3. A. Bachtold, P. Hadley, T. Nakanishi, C. Dekker, Physica E-Low-Dimensional Systems Nanostructures 16, 42 (2003)

    Article  Google Scholar 

  4. P. Avouris, R. Martel, V. Derycke, J. Appenzeller, Physica B-Condensed Matter 323, 6 (2002)

    Article  Google Scholar 

  5. V. Derycke, R. Martel, J. Appenzeller, P. Avouris, Nano Letters 1, 453 (2001)

    Article  Google Scholar 

  6. A. Javey, Q. Wang, A. Ural, Y.M. Li, H.J. Dai, Nano Letters 2, 929 (2002)

    Article  Google Scholar 

  7. A. Javey, H. Kim, M. Brink, Q. Wang, A. Ural, J. Guo, P. McIntyre, P. McEuen, M. Lundstrom, H.J. Dai, Nature Materials 1, 241 (2002)

    Article  PubMed  Google Scholar 

  8. J.M. Bonard, H. Kind, T. Stockli, L.A. Nilsson, Solid-State Electronics 45, 893 (2001)

    Article  Google Scholar 

  9. O. Zhou, H. Shimoda, B. Gao, S.J. Oh, L. Fleming, G.Z. Yue, Accounts of Chemical Research 35, 1045 (2002)

    Article  PubMed  Google Scholar 

  10. A. Javey, J. Guo, Q. Wang, M. Lundstrom, H.J. Dai, Nature 424, 654 (2003)

    Article  PubMed  Google Scholar 

  11. M. Radosavljevic, S. Heinze, J. Tersoff, P. Avouris, Applied Physics Letters 83, 2435 (2003)

    Article  Google Scholar 

  12. W. Kim, A. Javey, O. Vermesh, O. Wang, Y.M. Li, H.J. Dai, Nano Letters 3, 193 (2003)

    Article  Google Scholar 

  13. S. Rosenblatt, Y. Yaish, J. Park, J. Gore, V. Sazonova, P.L. McEuen, Nano Letters 2, 869 (2002)

    Article  Google Scholar 

  14. M. Shim, A. Javey, N.W.S. Kam, H.J. Dai, Journal of the American Chemical Society 123, 11512 (2001)

    Article  PubMed  Google Scholar 

  15. T. Someya, J. Small, P. Kim, C. Nuckolls, J.T. Yardley, Nano Letters 3, 877 (2003)

    Article  Google Scholar 

  16. S.J. Wind, J. Appenzeller, P. Avouris, Physical Review Letters 91, Art. No. 058301 (2003)

    Article  PubMed  Google Scholar 

  17. M.S. Fuhrer, J. Nygard, L. Shih, M. Forero, Y.G. Yoon, M.S.C. Mazzoni, H.J. Choi, J. Ihm, S.G. Louie, A. Zettl, P.L. McEuen, Science 288, 494 (2000)

    Article  PubMed  Google Scholar 

  18. K. Besteman, J.O. Lee, F.G.M. Wiertz, H.A. Heering, C. Dekker, Nano Letters 3, 727 (2003)

    Article  Google Scholar 

  19. R.J. Chen, S. Bangsaruntip, K.A. Drouvalakis, N.W.S. Kam, M. Shim, Y.M. Li, W. Kim, P.J. Utz, H.J. Dai, Proceedings of the National Academy of Sciences of the United States of America 100, 4984 (2003)

    Article  PubMed  Google Scholar 

  20. J. Kong, N.R. Franklin, C.W. Zhou, M.G. Chapline, S. Peng, K.J. Cho, H.J. Dai, Science 287, 622 (2000)

    Article  PubMed  Google Scholar 

  21. J. Kong, M.G. Chapline, H.J. Dai, Advanced Materials 13, 1384 (2001)

    Article  Google Scholar 

  22. J. Li, Y.J. Lu, Q. Ye, M. Cinke, J. Han, M. Meyyappan, Nano Letters 3, 929 (2003)

    Article  Google Scholar 

  23. A. Modi, N. Koratkar, E. Lass, B.Q. Wei, P.M. Ajayan, Nature 424, 171 (2003)

    Article  PubMed  Google Scholar 

  24. Q.F. Pengfei, O. Vermesh, M. Grecu, A. Javey, O. Wang, H.J. Dai, S. Peng, K.J. Cho, Nano Letters 3, 347 (2003)

    Article  Google Scholar 

  25. H.C. Choi, W. Kim, D.W. Wang, H.J. Dai, Journal of Physical Chemistry B 106, 12361 (2002)

    Article  Google Scholar 

  26. C.L. Cheung, A. Kurtz, H. Park, C.M. Lieber, Journal of Physical Chemistry B 106, 2429 (2002)

    Article  Google Scholar 

  27. L. An, J.M. Owens, L.E. McNeil, J. Liu, Journal of the American Chemical Society 124, 13688 (2002)

    Article  PubMed  Google Scholar 

  28. B.C. Liu, S.H. Tang, Z.L. Yu, B.L. Zhang, T. Chen, S.Y. Zhang, Chemical Physics Letters 357, 297 (2002)

    Article  Google Scholar 

  29. M. Zheng, A. Jagota, E.D. Semke, B.A. Diner, R.S. McLean, S.R. Lustig, R.E. Richardson, N.G. Tassi, Nature Materials 2, 338 (2003)

    Article  PubMed  Google Scholar 

  30. Z.H. Chen, X. Du, M.H. Du, C.D. Rancken, H.P. Cheng, A.G. Rinzler, Nano Letters 3, 1245 (2003)

    Article  Google Scholar 

  31. D. Chattopadhyay, L. Galeska, F. Papadimitrakopoulos, Journal of the American Chemical Society 125, 3370 (2003)

    Article  PubMed  Google Scholar 

  32. R. Krupke, F. Hennrich, H. von Lohneysen, M.M. Kappes, Science 301, 344 (2003)

    Article  PubMed  Google Scholar 

  33. E. Joselevich, C.M. Lieber, Nano Letters 2, 1137 (2002)

    Article  Google Scholar 

  34. A. Ural, Y.M. Li, H.J. Dai, Applied Physics Letters 81, 3464 (2002)

    Article  Google Scholar 

  35. S.G. Rao, L. Huang, W. Setyawan, S.H. Hong, Nature 425, 36 (2003)

    Article  PubMed  Google Scholar 

  36. D. Mann, A. Javey, J. Kong, Q. Wang, H.J. Dai, Nano Letters 3, 1541 (2003)

    Article  Google Scholar 

  37. P.L. McEuen, M.S. Fuhrer, H.K. Park, Ieee Transactions on Nanotechnology 1, 78 (2002)

    Article  Google Scholar 

  38. S.M. Huang, X.Y. Cai, J. Liu, Journal of the American Chemical Society 125, 5636 (2003)

    Article  PubMed  Google Scholar 

  39. S. Huang, B. Maynor, X. Cai, J. Liu, Advanced Materials 15, 1651 (2003)

    Article  Google Scholar 

  40. Y.M. Li, W. Kim, Y.G. Zhang, M. Rolandi, D.W. Wang, H.J. Dai, Journal of Physical Chemistry B 105, 11424 (2001)

    Article  Google Scholar 

  41. E.K. Achim Muller, Hartmut Bogge, Marc Schmidtmann, Christian Beugholt, Paul Kogerler, Canzhong Lu, Angewandte Chemie International Edition 37, 1220 (1998)

    Article  Google Scholar 

  42. E.K. Achim Muller, Hartmut Bogge, Marc Schmidtmann, Frank Peters, Angewandte Chemie International Edition 37, 3360 (1998)

    Google Scholar 

  43. S.S. Achim Muller, Syed Qaiser Nazir Shah, Hartmut Bogge, Marc Schmidtmann, Shatarupa Sarkar, Paul Kogerler, Bjorn Hauptfleisch, Alfred X. Trautwein, Volker Schunemann, Angewandte Chemie International Edition 38, 3238 (1999)

    Article  Google Scholar 

  44. S.P. Achim Muller, Samar K. Das, Erich Krickemeyer, Hartmut Bogge, Marc Schmidtmann, Bjorn Hauptfleisch, Angewandte Chemie International Edition 38, 3241 (1999)

    Article  Google Scholar 

  45. S.K.D. Achim Muller, Paul Kogerler, Hartmut Bogge, Marc Schmidtmann, Alfred X. Trautwein, Volker Schunemann, Erich Krickemeyer, Wilhelm Preetz, Angewandte Chemie International Edition 39, 3413 (2000)

    Article  Google Scholar 

  46. S.K.D. Achim Muller, Marina O. Talismanova, Hartmut Bogge, Paul Kogerler, Marc Schmidtmann, Serge S. Talismanov, Marshall Luban, Erich Krickemeyer, Angewandte Chemie International Edition 41, 579 (2002)

    Article  Google Scholar 

  47. A.M. Cassell, N.R. Franklin, T.W. Tombler, E.M. Chan, J. Han, H. Dai, Journal of the American Chemical Society 121, 7975 (1999)

    Article  Google Scholar 

  48. Y.G. Zhang, A.L. Chang, J. Cao, Q. Wang, W. Kim, Y.M. Li, N. Morris, E. Yenilmez, J. Kong, H.J. Dai, Applied Physics Letters 79, 3155 (2001)

    Article  Google Scholar 

  49. S. Huang, X. Cai, J. Liu, Nano Letters 4(6), 1025 (2004)

    Article  Google Scholar 

  50. B.Q. Wei, R. Vajtai, Y. Jung, J. Ward, R. Zhang, G. Ramanath, P.M. Ajayan, Nature 416, 495 (2002)

    Article  PubMed  Google Scholar 

  51. S.M. Huang, L.M. Dai, A.W.H. Mau, Advanced Materials 14, 1140 (2002)

    Article  Google Scholar 

  52. S.M. Huang, A.H.W. Mau, Applied Physics Letters 82, 796 (2003)

    Article  Google Scholar 

  53. S.M. Huang, A.W.H. Mau, Journal of Physical Chemistry B 107, 3455 (2003)

    Article  Google Scholar 

  54. G. Gu, G. Philipp, X.C. Wu, M. Burghard, A.M. Bittner, S. Roth, Advanced Functional Materials 11, 295 (2001)

    Article  Google Scholar 

  55. S. Huang, Q. Fu, L. An, J. Liu, Physical Chemistry Chemical Physics 6, 1077 (2004)

    Article  Google Scholar 

  56. J. Kong, H.T. Soh, A.M. Cassell, C.F. Quate, H.J. Dai, Nature 395, 878 (1998)

    Article  Google Scholar 

  57. R.T.K. Baker, P.S. Harris, Formation of Filamentous Carbon, Vol. 14. New York: Marcel Dekker, 1978

    Google Scholar 

  58. R.T.K. Baker, Carbon 27, 315 (1989)

    Article  Google Scholar 

  59. S.B. Sinnott, R. Andrews, D. Qian, A.M. Rao, Z. Mao, E.C. Dickey, F. Derbyshire, Chemical Physics Letters 315, 25 (1999)

    Article  Google Scholar 

  60. J. Han, J.-B. Yoo, C.Y. Park, H.-J. Kim, G.S. Park, M. Yang, I.T. Han, N. Lee, W. Yi, S.G. Yu, J.M. Kim, Journal of Applied Physics 91, 483. (2002)

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Huang, S., Liu, J. (2005). Direct Growth of Single Walled Carbon Nanotubes on Flat Substrates for Nanoscale Electronic Applications. In: Rotkin, S.V., Subramoney, S. (eds) Applied Physics of Carbon Nanotubes. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-28075-8_4

Download citation

Publish with us

Policies and ethics