Skip to main content

Monitoring Chemical and Physical Stress Using Sea Urchin Immune Cells

  • Chapter
Echinodermata

Part of the book series: Progress in Molecular and Subcellular Biology ((MMB,volume 39))

Abstract

Coelomocytes are the cells freely circulating in the body fluid contained in echinoderm coelom and constitute the defence system, which, in response to injuries, host invasion, and adverse conditions, is capable of chemotaxis, phagocytosis, and production of cytotoxic metabolites. Red and colourless amoebocytes, petaloid and philopodial phagocytes, and vibratile cells are the cell types that, in different proportions, constitute the mixed coelomocyte cell population found in sea urchins. Advances in cellular and molecular biology have made it possible to identify a number of specific proteins expressed in coelomocytes under resting conditions or when activated by experimentally induced stress. Only recently, coelomocytes have been used for pollution studies with the aim of introducing a new biosensor for detection of stress at both cellular and molecular levels, as sentinel of sea health. In this chapter, we briefly review the important features of these valuable cells and describe studies on their use in the laboratory and in the field for the assessment of chemical and physical pollution of the sea.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Al-Sharif WZ, Suyer JO, Lambris JD, Smith LC (1998) Sea urchin coelomocytes specifically express a homologue of the complement component C3. J Immunol 160:2983–2997

    PubMed  Google Scholar 

  • Angelini C, Amaroli A, Falugi C, Di Bella G, Matranga V (2003) Acetylcholinesterase activity is affected by stress conditions in Paracentrotus lividus coelomocytes. Mar Biol 143:623–628

    Article  Google Scholar 

  • Bachmann S, Goldschmid A (1978) Fine structure of the axial complex of Sphaerechinus granularis (Lam.) (Echinodermata: Echinoidea). Cell Tissue Res 193:107–123

    Article  PubMed  Google Scholar 

  • Beck G, Habich GS (1986) Isolation and characterization of a primitive interleukin-1-like protein from an invertebrate, Asterias forbesi. Proc Natl Acad Sci USA 83:7429–7433

    PubMed  Google Scholar 

  • Beck G, Habich GS (1996) Characterization of an IL-6-like molecule from an echinoderm (Asterias forbesi). Cytokine 8:507–512

    Article  PubMed  Google Scholar 

  • Beck G, Ellis TW, Habich GS, Schluter SF, Marchalonis JJ (2002) Evolution of the acute phase response: iron release by echinoderm (Asterias forbesi) coelomocytes, and cloning of an echinoderm ferritin molecule. Dev Comp Immunol 26:11–26

    Article  PubMed  Google Scholar 

  • Bertheussen K (1981) Endocytosis by echinoid phagocytosis in vitro. I. Recognition of foreign matter. Dev Comp Immunol 5:241–250

    Article  PubMed  Google Scholar 

  • Bertheussen K, Seljelid R (1978) Echinoid phagocyte in vitro. Exp Cell Res 111:401–412

    Article  PubMed  Google Scholar 

  • Bonaventura R, Poma V, Costa C, Matranga V (2005) UVB prevents skeleton growth and simulates the expression of stress markers in sea urchin embryo. Biophys Biochem Res Comm 328:150–157

    Article  Google Scholar 

  • Burke RD (1999) Invertebrate integrins: structure, function, and evolution. Int Rev Cytol 191:257–284

    PubMed  Google Scholar 

  • Burke RD, Watkins RF (1991) Stimulation of starfish coelomocytes by interleukin-1. Biochem Biophys Res Commun 180:579–584

    Article  PubMed  Google Scholar 

  • Canicattì C, Rizzo A (1991) A 220 kDa coelomocyte aggregating factor involved in Holothuria polii cellular clotting. Eur J Cell Biol 56:79–83

    PubMed  Google Scholar 

  • Canicattì C, Pagliara P, Stabili L (1992) Sea urchin coelomic fluid agglutinin mediates coelomocyte adhesion. Eur J Cell Biol 58:291–295

    PubMed  Google Scholar 

  • Cervello M, Arizza V, Lattuca G, Parrinello N, Matranga V (1994) Detection of vitellogenin in a subpopulation of sea urchin coelomocytes. Eur J Cell Biol 64:314–319

    PubMed  Google Scholar 

  • Christensen AB, Colacino JM, Bonaventura C (2003) Functional and biochemical properties of the hemoglobins of the burrowing brittle star Hemipholis elongata say (Echinodermata, Ophiuroidea). Biol Bull 205:54–65

    PubMed  Google Scholar 

  • Clow LA, Raftos DA, Gross PS, Smith LC (2004) The sea urchin complement homologue, SpC3, functions as an opsonin. J Exp Biol 207:2147–2155

    Article  PubMed  Google Scholar 

  • Coteur G, Pernet P, Gillan D, Joly G, Maage A, Dubois P (2003) Field contamination of the starfish Asterias rubens by metals. Part 1: short-and long-term accumulation along a pollution gradient. Environ Toxicol Chem 22:2136–2144

    Article  PubMed  Google Scholar 

  • D'Andrea L, Danon MA, Sgourdas GP, Bonder EM (1994) Identification of coelomocyte unconventional myosin and its association with in vivo particle/vesicle motility. J Cell Sci 107:2081–2094

    PubMed  Google Scholar 

  • Edds KT (1985) Morphological and cytoskeletal transformation in sea urchin coelomocytes. In: Cohen WD (ed) Blood cells of marine invertebrates: experimental systems in cell biology and comparative physiology. AR Liss, New York, pp 53–74

    Google Scholar 

  • Edds KT (1993) Effects of cytochalasin and colcemid on cortical flow in coelomocytes. Cell Motil Cytoskeleton 26:262–273

    Article  PubMed  Google Scholar 

  • Epel D, Hemela K, Schick M, Patton C (1999) Development in the floating world: defenses of eggs and embryos against damage from UV radiation. Am Zool 39:271–278

    Google Scholar 

  • Falugi C (1985) Histochemical localization of acetylcholinesterase in blood cells. Basic Appl Histochem 29:105–113

    PubMed  Google Scholar 

  • Gallucci S, Matzinger P (2001) Danger signals: SOS to the immune system. Curr Opin Immunol 13:114–119

    Article  PubMed  Google Scholar 

  • Geraci F, Pinsino A, Turturici G, Savona R, Giudice G, Sconzo G (2004) Nickel, lead, and cadmium induce differential cellular responses in sea urchin embryos by activating the synthesis of different HSP70s. Biochem Biophys Res Commun 322:873–877

    Article  PubMed  Google Scholar 

  • Gerardi P, Lassegues M, Canicattì C (1990) Cellular distribution of sea urchin antibacterial activity. Biol Cell 70:153–157

    Article  Google Scholar 

  • Giudice G (1989) Heat shock proteins in sea urchin embryos. Dev Growth Differ 31:103–106

    Article  Google Scholar 

  • Glinski Z, Jarosz J (2000) Immune phenomena in echinoderms. Arch Immunol Ther Exp 48:189–193

    Google Scholar 

  • Goldschmidt-Clermont P, Machesky L, Doberstein S, Pollard T (1991) Mechanism of the interaction of human platelet profilin with actin. J Cell Biol 113:1081–1089

    Article  PubMed  Google Scholar 

  • Gross PS, Clow LA, Smith LC (2000) SpC3, the complement homologue from the purple sea urchin, Strongylocentrotus purpuratus, is expressed in two subpopulations of the phagocytic coelomocytes. Immunogenetics 51:1034–1044

    Article  PubMed  Google Scholar 

  • Hansen MB, Nielsen SE, Berg K (1989) Re-examination and further development of a precise and rapid dye method for measuring cell growth/cell kill. J Immunol Methods 119:203–210

    Article  PubMed  Google Scholar 

  • Harrison PK, Falugi C, Angelini C, Whitaker MJ (2002) Muscarinic signalling affects intracellular calcium concentration during the first cell cycle of sea urchin embryos. Cell Calcium 31:289–297

    Article  PubMed  Google Scholar 

  • Henson JH, Nesbitt D, Wright BD, Scholey JS (1992) Immunolocalisation of kinesin in sea urchin coelomocytes: association of kinesis with intracellular organelles. J Cell Sci 103:309–320

    PubMed  Google Scholar 

  • Henson JH, Svitkina TM, Burns AR, Hughes HE, MacPartland KJ, Nazarian R, Borisy GG (1999) Two components of actin-based retrograde flow in sea urchin coelomocytes. Mol Biol Cell 10:4075–4090

    PubMed  Google Scholar 

  • Henson JH, Kolnik SE, Fried CA, Nazarian R, McGreevy J, Schulberg KL, Detweiler M, Trabosh VA (2003) Actin-based centripetal flow: phosphatase inhibition by calyculin-A alters flow pattern, actin organization, and actomyosin distribution. Cell Motil Cytoskeleton 56:252–266

    Article  PubMed  Google Scholar 

  • Hillier BJ, Vacquier VD (2003) Amassin, an olfactomedin protein, mediates the massive intercellular adhesion of sea urchin coelomocytes. J Cell Biol 160:597–604

    Article  PubMed  Google Scholar 

  • Holy J (2000) Intermediate filament proteins in echinoderm coelomocytes. Comp Biochem Physiol B Biochem Mol Biol 127:491–504

    Article  PubMed  Google Scholar 

  • Johnson PT (1969) The coelomic elements of sea urchins (Strongylocentrotus). 3. In vitro reaction to bacteria. J Invertebr Pathol 13:42–62

    Article  PubMed  Google Scholar 

  • Kobayashi N (1980) Comparative sensitivity of various developmental stages of sea urchins to some chemicals. Mar Biol 58:163–171

    Article  Google Scholar 

  • Koros AMC (1993) Neuroendocrine marker expression on sea urchin coelomocytes and other immunoregulatory parameters may be used to monitor environmental changes. Mar Environ Res 35:137–140

    Article  Google Scholar 

  • Koros AMC, Goodwin DG, Siderits RH, Malavasi F (2000) “Natural Killer” (NK) cell antigens, CD 56, CD57, and others are expressed on breast and lung tumor cells as well as sea urchin coelomocytes. Tissue Antigens 55:77–78

    Google Scholar 

  • Koziol C, Batel R, Arinc E, Schröder HC, Müller WEG (1997) Expression of the potential biomarker heat shock protein 70 and its regulator, the metazoan DnaJ homolog, by temperature stress in the sponge Geodia cydonium. Mar Ecol Prog Ser 154:261–268

    Google Scholar 

  • Leclerc M, Bajelan M (1992) Homologous antigen for T cell receptor in axial organ cells from the asterid Asterias rubens. Cell Biol Int Rep 16:487–490

    PubMed  Google Scholar 

  • Le Marrec-Croq F, Glaise D, Guguen-Guillouzo C, Chesne C, Guillouzo A, Boulo V, Dorange G (1999) Primary cultures of heart cells from the scallop Pecten maximus (molluscabivalvia). In Vitro Cell Dev Biol Anim 35:289–295

    PubMed  Google Scholar 

  • Lesser MP, Kruse VA, Barry TM (2003) Exposure to ultraviolet radiation causes apoptosis in developing sea urchin embryos. J Exp Biol 206:4097–4103

    Article  PubMed  Google Scholar 

  • Lin W, Zhang H, Beck G (2001) Phylogeny of natural cytotoxicity: cytotoxic activity of coelomocytes of the purple sea urchin, Arbacia punctulata. J Exp Zool 290:741–750

    Article  PubMed  Google Scholar 

  • Matranga V (1996) Molecular aspects of immune reactions in Echinodermata. In: Müller WEG, Rinkevich B (eds) Invertebrate immunology, vol 15. PMSB Series. Springer, Berlin Heidelberg New York, pp 235–247

    Google Scholar 

  • Matranga V, Bonaventura R (2002) Sea urchin coelomocytes, the progenitors of vertebrate immune effectors, as bio-indicators of stress and pollution. In: Yokota Y, Matranga V, Smolenicka Z (eds) The sea urchin: from basic biology to aquaculture. Swets and Zeitlinger, Lisse, The Netherlands, pp 161–176

    Google Scholar 

  • Matranga V, Kuwasaki B, Noll H (1986) Functional characterization of toposomes from sea urchin blastula embryos by a morphogenetic cell aggregation assay. EMBO J 5:3125–3132

    PubMed  Google Scholar 

  • Matranga V, Toia G, Bonaventura R, Muller WEG (2000) Cellular and biochemical responses to environmental and experimentally induced stress in sea urchin coelomocytes. Cell Stress Chaperones 5:158–165

    Article  Google Scholar 

  • Matranga V, Bonaventura R, Di Bella G (2002) hsp70 as a stress marker of sea urchin coelomocytes in short term cultures. Cell Mol Biol 48:345–359

    PubMed  Google Scholar 

  • Matzinger P (2002) The danger model: a renewed sense of self. Science 296:301–305

    Article  PubMed  Google Scholar 

  • McDonald GD, Davidson L, Kitto GB (1992) Amino acid sequence of the coelomic C globin from the sea cucumber Caudina (Molpadia) arenicola. J Protein Chem 11:29–37

    Article  PubMed  Google Scholar 

  • Medzhitov R, Janeway CA Jr (2002) Decoding the patterns of self and nonself by the innate immune system. Science 12:298–300

    Article  Google Scholar 

  • Medzhitov R, Preston-Hurlburt P, Janeway CA Jr (1997) A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388:394–397

    Article  PubMed  Google Scholar 

  • Millott N (1969) Injury and the axial organ of echinoids. Experientia 25:756

    Article  Google Scholar 

  • Morale A, Coniglio L, Angelini C, Cimoli G, Bolla A, Alleteo D, Russo P, Falugi C (1998) Biological effects of a neurotoxic pesticide at low concentrations on sea urchin early development. A teratogenic assay. Chemosphere 37:3001–3010

    Article  PubMed  Google Scholar 

  • Mosman T (1983) Rapid colorimetric assay for cellular growth and cytotoxicity assays. J Immunol Methods 65:55

    Article  PubMed  Google Scholar 

  • Müller WEG, Batel R, Lacorn M, Steinhart H, Simat T, Lauenroth S, Hassanein HMA, Schröder HC (1998) Accumulation of cadmium and zinc in the marine sponge Suberites domuncula and its potential consequences on single-strand breaks and on expression of heat shock protein: a natural field study. Mar Ecol Prog Ser 167:127–135

    Google Scholar 

  • Multerer KA, Smith LC (2004) Two cDNAs from the purple sea urchin, Strongylocentrotus purpuratus, encoding mosaic proteins with domains found in factor H, factor I, and complement components C6 and C7. Immunogenetics 56:89–106

    Article  PubMed  Google Scholar 

  • Ozretic B, Krajnovic-Ozretic M (1985) Morphological and biochemical evidence of the toxic effect of pentachlorophenol on the developing embryos of the sea urchin. Aquat Toxicol 7:255–263

    Article  Google Scholar 

  • Pennec JP, Gallet M, Gioux M, Dorange G (2002) Cell culture of bivalves: tool for the study of the effects of environmental stressors. Cell Mol Biol (Noisy-le-grand) 48:351–358

    Google Scholar 

  • Prendergast RA, Lutty GA, Scott AL (1983) Directed inflammation: the phylogeny of lymphokines. Dev Comp Immunol 7:629–632

    Article  Google Scholar 

  • Ringwood AH, Hameedi MJ, Lee RF, Brouwer M, Peters EC, Scott GI, Luoma SN, Digiulio RT (1999) Bivalve biomarker workshop: overview and discussion summaries. Biomarkers 4:391–399

    Article  Google Scholar 

  • Roccheri MC, Agnello M, Bonaventura R, Matranga V (2004) Cadmium induces the expression of specific stress proteins in sea urchin embryos. Biophys Biochem Res Commun 321:80–87

    Article  Google Scholar 

  • Russo R, Bonaventura R, Zito F, Schröder HC, Müller I, Müller WEG, Matranga V (2003) Stress to cadmium monitored by metallothionein gene induction in Paracentrotus lividus embryos. Cell Stress Chaperones 8:232–241

    Google Scholar 

  • Samali A, Cotter TG (1996) Heat shock proteins increase resistance to apoptosis. Exp Cell Res 223:163–170

    Article  PubMed  Google Scholar 

  • Schröder HC, Hassanein HMA, Lauenroth S, Koziol C, Mohamed TAAA, Lacorn M, Steinhart H, Batel R, Müller WEG (1999) Induction of DNA strand breaks and expression of hsp70 and GRP78 homolog by cadmium in the marine sponge Suberites domuncula. Arch Environ Contam Toxicol 36:47–55

    Article  PubMed  Google Scholar 

  • Sconzo G, Scardina G, Ferraro MG (1992) Characterization of a new member of the sea urchin Paracentrotus lividus hsp 70 gene family and its expression. Gene 121:353–358

    Article  PubMed  Google Scholar 

  • Sconzo G, Romancino D, Fasulo G, Cascino D, Giudice G (1995) Effect of doxorubicin and phenytoin on sea urchin development. Pharmacie 50:616–619

    Google Scholar 

  • Shah M, Brown KM, Smith LC (2003) The gene encoding the sea urchin complement protein, SpC3, is expressed in embryos and can be upregulated by bacteria. Dev Comp Immunol 27:529–538

    Article  PubMed  Google Scholar 

  • Smith LC, Britten RJ, Davidson EH (1992) SpCoel1: a sea urchin profilin gene expressed specifically in coelomocytes in response to injury. Mol Biol Cell 3:403–414

    PubMed  Google Scholar 

  • Smith SL, Smith AC (1985) Sensitization and histamine release by cells of the sand dollar, Mellita quinquiesperforata. Dev Comp Immunol 9:597–603

    Article  PubMed  Google Scholar 

  • Smith VJ (1981) The echinoderms. In: Ratcliffe NA, Rowley AT (eds) Invertebrate blood cells, vol 2. Academic Press, London

    Google Scholar 

  • Unuma T, Okamoto H, Konishi K, Ohta H, Mori K (2001) Cloning of cDNA encoding vitellogenin and its expression in red sea urchin, Pseudocentrotus depressus. Zool Sci 18:559–565

    Article  Google Scholar 

  • Yokoe H, Anholt RR (1993) Molecular cloning of olfactomedin, an extracellular matrix protein specific to olfactory neuroepithelium. Proc Natl Acad Sci USA 90:4655–4659

    PubMed  Google Scholar 

  • Yui MA, Bayne CJ (1983) Echinoderm immunology: bacterial clearance by the sea urchin Strongylocentrotus purpuratus. Biol Bull 165:473–486

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Matranga, V. et al. (2005). Monitoring Chemical and Physical Stress Using Sea Urchin Immune Cells. In: Matranga, V. (eds) Echinodermata. Progress in Molecular and Subcellular Biology, vol 39. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27683-1_5

Download citation

Publish with us

Policies and ethics