Skip to main content

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 509.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 649.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Further Reading

  • Ajayi-Obe M, Saeed N, Cowan FM, Rutherford MA, Edwards AD. Reduced development of cerebral cortex in extremely preterm infants. Lancet 2000; 356: 1162–1163

    CAS  PubMed  Google Scholar 

  • Autti T, Raininko R, Vanhanen SL, Kallio M, Santavuori P. MRI of the normal brain from early childhood to middle age. II. Age dependence of signal intensity of T2-weighted images. Neuroradiology 1994; 36: 649–651

    CAS  PubMed  Google Scholar 

  • Ball WS Jr. Imaging of the brain in children. Curr Opin Radiol 1991; 3: 895–905

    PubMed  Google Scholar 

  • Barkovich AJ, Kjos BO, Jackson DE, Norman D. Normal maturation of the neonatal and infant brain: MR imaging at 1.5T1. Radiology 1988; 166: 173–180

    CAS  PubMed  Google Scholar 

  • Barkovich AJ, Gressens P, Evrard P. Formation, maturation, and disorders of brain neocortex. AJNR Am J Neuroradiol 1992; 13: 423–446

    CAS  PubMed  Google Scholar 

  • Barkovich AJ. Concepts of myelin and myelination in neuroradiology 2000; 21: 1099–1109

    CAS  Google Scholar 

  • Battin MR, Maalouf EF, Counsell SJ, Herlihy AH, Rutherford MA, Azzopardi D, Edwards AD. Magnetic resonance imaging of brain in very preterm infants: visualization of the germinal matrix, early myelination, and cortical folding. Pediatrics 1998; 101: 957–962

    Article  CAS  PubMed  Google Scholar 

  • Benes FM, Turtle M, Khan Y, Farol P. Myelination of a key relay zone in the hippocampal formation occurs in the human brain during childhood, adolescence, and adulthood. Arch Gen Psychiatry 1994; 51: 477–484

    CAS  PubMed  Google Scholar 

  • Blaser S, Harwood-Nash DCF. Radiology of the developing central nervous system. Curr Opin Neurol Neurosurg 1992; 5:843–848

    CAS  PubMed  Google Scholar 

  • Breger RK, Yetkin FZ, Fisher ME, Papke RA, Haughton VM, Rimm AA. T1 and T2 in the cerebrum: correlation with age, gender, and demographic factors. Radiology 1991; 181: 545–547

    CAS  PubMed  Google Scholar 

  • Chi JG, Dooling EC, Gilles FH. Gyral development of the human brain. Ann Neurol 1977; 1: 86–93

    Article  CAS  PubMed  Google Scholar 

  • Childs AM, Remenghi LA, Evans DJ, Ridgeway J, Saysell M, Martinez D, Arthur R, Tanner S, Levene MI. MR features of developing periventricular white matter in preterm infants: evidence of glial cell migration. AJNR Am J Neuroradiol 1998; 19: 971–976

    CAS  PubMed  Google Scholar 

  • Childs AM, Ramenghi LA, Cornette L, Tanner SF, Arthur RJ, Martinez D, Levene MI. Cerebral maturation in premature infants: quantitative assessment using MR imaging. AJNR Am J Neuroradiol 2001; 22: 1577–1582

    CAS  PubMed  Google Scholar 

  • Counsell SJ, Maalouf EF, Fletcher AM, Duggan P, Battin M, Lewis HJ, Herlily AH, Edwards D, Bydder GM, Rutherford MA. MR imaging assessment of myelination in the very preterm brain. AJNR Am J Neuroradiol 2002; 23: 872–881

    PubMed  Google Scholar 

  • Counsell SJ, Kennea NL, Herlihy AH, Allsop JM, Harrison MC, Cowan FM, Hajnal JV, Edwards B, Edwards AD, Rutherford MA. T2 relaxation values in the developing preterm brain. AJNR Am J Neuroradiol 2003; 24: 1654–1660

    PubMed  Google Scholar 

  • Dietrich RB, Badley WG, Zaragoza EJ IV, Otto RJ, Taira RK, Wilson GH, Kangarloo H. MR evaluation of early myelination patterns in normal and developmentally delayed infants. AJNR Am J Neuroradiol 1988; 9: 69–76

    Google Scholar 

  • Dooling EC, Chi JG, Gilles FH. Telencephalic development: changing gyral patterns. In: Gilles FH, Leviton A, Dooling EC. The deverloping human brain. Growth and epidemiologic neuropathology. Boston: John Wright, 1983: 94–104

    Google Scholar 

  • Duprez T, Ghaniani S, Smith AM, Gadisseux JF, Evrard P. Focal seizure-induced premature myelination: speculation from serial MRI. Neuroradiology 1998; 40: 580–582

    Article  CAS  PubMed  Google Scholar 

  • Engelbrecht V, Malms J, Kahn T, Grünewald S, Mödder U. Fast spin-echo MR imaging of the pediatric brain. Pediatr Radiol 1996; 26: 259–264

    Article  CAS  PubMed  Google Scholar 

  • Engelbrecht V, Rassek M, Preiss S, Wald C, Mödder U. Age-dependent changes in magnetization transfer contrast of white matter in the pediatric brain. AJNR Am J Neuroradiol 1998; 19: 1923–1929

    CAS  PubMed  Google Scholar 

  • Engelbrecht V, Scherer A, Rassek M, Witsack HJ, Mödder U. Diffusion-weighted MR imaging in the brain in children: findings in the normal brain and in the brain with white matter diseases. Radiology 2002; 222: 410–418

    PubMed  Google Scholar 

  • Ferrie JC, Barantin L, Saliba E, Akoka S, Tranquart F, Sirinelli D, Pourcelot L. MR assessment of the brain maturation during the perinatal period: quantitative t2 MR study in premature newborns. Magn Reson Imaging 1999; 17: 1275–1288

    CAS  PubMed  Google Scholar 

  • Finelli DA, Hurst GC, Amantia P Jr, Gullapali RP, Apicella A. Cerebral white matter: technical development and clinical applications of effective magnetization transfer (MT) power concepts for high-power transfer, thin-section, quantitative MT examinations. Radiology 1996; 199: 219–226

    CAS  PubMed  Google Scholar 

  • Flechsig P. Anatomie des menschlichen Gehirns und Rückenmarks auf myelogenetischer Grundlage. Leipzig: Georg Thieme, 1920

    Google Scholar 

  • Forbes KPN, Pipe JG, Bird CR. Changes in brain water diffusion during the 1st year of life. Radiology 2002; 222: 405–409

    PubMed  Google Scholar 

  • Garel C, Chantrel E, Brisse H, Elmaleh M, Luton D, Oury JF, Sebag G, Hassan M. Fetal cerebral cortex: normal gestational landmarks identified using prenatal MR imaging. AJNR Am J Neuroradiol 2001; 22: 184–189

    CAS  PubMed  Google Scholar 

  • Ge Y, Grossman RI, Babb JS, Rabin ML, Mannon LJ, Kolson DL. Age-related total gray matter and white matter changes in normal adult brain. Part I: volumetric MR imaging analysis. AJNR Am J Neuroradiol 2002; 23: 1327–1333

    PubMed  Google Scholar 

  • Ge Y, Grossmann RI, Babb JS, Rabin ML, Mannon LJ, Kolson DL. Age-related total gray matter and white matter changes is normal adult brain. Apart II: Quantitative magnetization transfer ratio histogram analysis. AJNR Am J Neuroradiol 2002; 23: 1334–1341

    PubMed  Google Scholar 

  • Girard N, Raybaud C, du Lac P. Étude de la myélinisation cérébrale en IRM. MRI study of brain myelination. J Neuroradiol 1991; 18: 291–307

    CAS  PubMed  Google Scholar 

  • Hansen PE, Ballesteros MC, Soila K, Garcia L, Howard JM. MR imaging of the developing human brain. Part 1: prenatal development. Radiographics 1993; 13: 21–36

    CAS  PubMed  Google Scholar 

  • Hittmair K, Wimberger D, Rand T, Prayer L, Bernert G, Kramer J, Imhof H. MR assessment of brain maturation: comparison of sequences. AJNR Am J Neuroradiol 1994; 15: 425–433

    CAS  PubMed  Google Scholar 

  • Hittmair K, Kramer J, Rand T, Bernert G, Wimberger D. Infratentorial brain maturation: a comparison of MRI at 0.5 and 1.5 T. Neuroradiology 1996; 38: 360–366

    CAS  PubMed  Google Scholar 

  • Holland BA, Haas DK, Norman D, Brant-Zawadski M, Newton TH. MRI of normal brain maturation. AJNR Am J Neuroradiol 1986; 7: 201–208

    CAS  PubMed  Google Scholar 

  • Hosoya T, Adachi M, Yamaguchi K, Haku T. MRI anatomy of white matter layers around the trigone of the lateral ventricle. Neuroradiology 1998; 40: 477–482

    Article  CAS  PubMed  Google Scholar 

  • Huisman TAGM, Wisser J, Martin E, Kubik-Huch R, Marineck B. Fetal magnetic resonance imaging of the central nervous system: a pictorial essay. Eur Radiol 2002; 12: 1952–1261

    PubMed  Google Scholar 

  • Hüppi PS, Maier SE, Peled S, Zientara GP, Barnes PD, Jolenz FA, Volpe JJ. Microstructural development of human in assessed in vivo by diffusion tensor magnetic resonance imaging. Pediatr Res 1998; 44: 584–590

    PubMed  Google Scholar 

  • Hüppi PS, Warfield S, Kikinis R, Barnes PD, Zientara GP, Jolensz FA, Tsuij MK, Volpe JJ. Quantitative magnetic resonance imaging of brain development in premature and mature newborns. Ann Neurol 1998; 43: 224–235

    Article  PubMed  Google Scholar 

  • Johnson MA, Pennock JM, Bydder GM, Steiner RE, Thomas DJ, Hayward R, Bryant DRT, Payne JA, Levene MI, Whitelay A, Dubowitz LMS, Dubowitz V. Clinical NMR imaging of the brain in children: normal and neurologic disease. AJNR Am J Neuroradiol 1983; 4: 1013–1025

    Google Scholar 

  • Jolensz FA, Polak JF, Adams DF, Ruenzel PW. Myelinated and non-myelinated nerves: comparison of proton MR properties. Radiology 1987; 164: 89–91

    Google Scholar 

  • Jones RA, Palasis S, Grattan-Smith JD. The evolution of the apparent diffusion coefficient in the pediatric brain at low and high diffusion weightings. J Magn Reson Imaging 2003; 18: 665–674

    Article  PubMed  Google Scholar 

  • Keene MFL, Hewer EE. Some observations on myelination in the human nervous system. J Anat 1931; 6: 1–13

    Google Scholar 

  • Korogi Y, Takahashi M, Sumi M, Hirai T, Sakamoto Y, Ikushima I, Miyayama H. MR signal intensity of the perirolandic cortex in the neonate and infant. Neuroradiology 1996; 38:578–584

    CAS  PubMed  Google Scholar 

  • Krier EL, Truwit CL. The normal and abnormal genu of the corpus callosum: an evolutionary, embryologic, anatomic, and MR analysis. AJNR Am J Neuroradiol 1996; 17: 1631–1641

    Google Scholar 

  • Lövblad KO, Schneider J, Ruoss K, Steinlin M, Fusch C, Schroth G. Isotropic apparent diffusion coefficient mapping of postnatal cerebral development. Neuroradiology 2003; 45:400–403

    Article  PubMed  Google Scholar 

  • Martin E, Kikinis R, Zuerrer M, Boesch C, Briner J, Krewitz G, Kaelin P. Developmental stages of human brain: an MR study. J Comput Assist Tomogr 1988; 12: 917–922

    CAS  PubMed  Google Scholar 

  • Martin E, Boesch C, Zuerrer M, Kikinis R, Molinari L, Kealin P, Boltshauser E, Duc G. MR imaging of brain maturation in normal and developmentally handicapped children. J Comput Assist Tomogr 1990; 14: 685–692

    CAS  PubMed  Google Scholar 

  • Martin E, Krassnitzer S, Kealin P, Boesch Ch. MR imaging of the brainstem: normal postnatal development. Neuroradiology 1991; 33: 391–395

    Article  CAS  PubMed  Google Scholar 

  • McArdle CB, Richardson CJ, Nicholas DA, Mirfakhraee M, Hayden CK, Amparo EG. Developmental features of the neonatal brain: MR imaging. 1. Gray-white matter differentiation and myelination. Radiology 1987; 162: 223–229

    CAS  PubMed  Google Scholar 

  • Miller SP, Vigneron DB, Henry RG, Bohland MA, Ceppi-Cozzio C, Hoffman C, Newton N, Partridge JC, Ferriero DM, Barkovich AJ. Serial quantitative diffusion tensor MRI of the premature brain: development in newborns with and without injury. J Magn Reson Imaging 2002; 16: 621–632

    Article  PubMed  Google Scholar 

  • Mukherjee P, Miller JH, Lee BCP, Almli CR, McKinstry RC. Normal brain maturation during childhood: developmental trends characterized with diffusion tensor MR imaging. Radiology 2001; 221: 349–358

    CAS  PubMed  Google Scholar 

  • Mukherjee P, Miller JH, Shimony JS, Philip JV, Nehra D, Snyder AZ, Conturo TE, Neil JJ, McKinstry RC. Diffusion-tensor MR imaging of gray and white matter development during normal brain maturation. AJNR Am J Neuroradiol 2002; 23:1445–1456

    PubMed  Google Scholar 

  • Murakami JW, Weinberger E, Shaw DWW. Normal myelination of the pediatric brain imaged with fluid-attenuated inversion-recovery (FLAIR) MR imaging. AJNR Am J Neuroradiol 1999; 20: 1406–1411

    CAS  PubMed  Google Scholar 

  • Naidich TP, Grant JL, Altman N, Zimmerman RA, Birchansky SB, Braffman B, Daniel JL. The developing cerebral surface. Preliminary report on the patterns of sulcal and gyral maturation — anatomy, ultrasound, and magnetic resonance imaging. Pediatr Neuroradiol 1994; 4201–239

    CAS  Google Scholar 

  • Naidich TP, Grant JL, Altman N, Zimmerman RA, Birchansky SB, Braffman BM, Daniel JL. The developing cerebral surface. Neuroimaging Clin N Am 1994; 4: 201–240

    CAS  PubMed  Google Scholar 

  • Neill JJ, Shiran SI, McKinstry RC, Schefft GL, Snyder AZ, Almli CR, Akbubak E, Aronovitz JA, Miller JP, Lee BCP, Conturo TE. Normal brain in human newborns: apparent diffusion coefficient and diffusion anisotrophy measured by using diffusion tensor MR imaging. Radiology 1998; 209: 57–66

    Google Scholar 

  • Parazzini C, Baldoli C, Scotti G, Triulzi F. Terminal zones of myelination: MR evaluation of children aged 20–40 months. AJNR Am J Neuroradiol 2002; 23: 1669–1673

    PubMed  Google Scholar 

  • Pennock JM, Bydder GM, Dubowitz LMS, Johnson MA. Magnetic resonance imaging of the brain in children. Magn Reson Imaging 1986; 4: 1–9

    CAS  PubMed  Google Scholar 

  • Rademacher J, Engelbrecht V, Bürgel U, Freund H-J, Zilles K. Measuring in vivo myelination of human white matter fiber tracts with magnetization transfer MR. Neuroimage 1999; 9:393–406

    Article  CAS  PubMed  Google Scholar 

  • Robertson RL, Robson CD. Diffusion imaging in neonates. Neuroimaging Clin N Am 2002; 12: 55–70

    Article  PubMed  Google Scholar 

  • Ruoss K, Lövblad K, Schroth G, Moessinger AC, Fusch C. Brain development (sulci and gyri) as assessed by early postnatal MR imaging in preterm and term newborn infants. Neuropediatrics 2001; 32: 69–74

    Article  CAS  PubMed  Google Scholar 

  • Schmithorst VJ, Wilke M, Dardzinki BJ, Holland SK. Correlation of white matter diffusivity and anisotrophy with age during childhood and adolescence: a cross-sectional diffusiontensor MR imaging study. Radiology 2002; 222: 212–218

    PubMed  Google Scholar 

  • Schneider JFL, Il’yasov KA, Hennig J, Martin E. Fast quantitative diffusion-tensor imaging of cerebral white matter from the neonatal period to adolescence. Neuroradiology 2004; 46:258–266

    Article  CAS  PubMed  Google Scholar 

  • Shaw DWW, Weinberger E, Astley SJ, Tsuruda JS. Quantitative comparison of conventional spin echo and fast spin echo during brain myelination. J Comput Assist Tomogr 1997; 21:867–871

    Article  CAS  PubMed  Google Scholar 

  • Sie LT, van der Knaap MS, van Wezel-Meijler G, Valk J. MRI assessment of myelination of motor and sensory pathways in the brain of preterm and term-born infants. Neuropediatrics 1997; 28: 97–105

    CAS  PubMed  Google Scholar 

  • Sie LT, Barkhof F, Lafeber HN, Valk J, van der Knaap MS. Value of fluid-attenuated inversion recovery sequences in early MRI of the brain in neonates with a perinatal hypoxic-ischemic encephalopathy. Eur Radiol 2000; 10: 1594–1601

    Article  CAS  PubMed  Google Scholar 

  • Stricker T, Martin E, Boesch C. Development of the human cerebellum observed with high-field-strength MR imaging. Radiology 1990; 177: 431–435

    CAS  PubMed  Google Scholar 

  • Takeda K, Nomura Y, Sakuma H, Tagami T, Okuda Y, Nakagawa T. MR assessment of normal brain development in neonates and infants: comparative study of T1-and diffusion-weighted images. J Comput Assist Tomogr 1997; 21: 1–7

    Article  CAS  PubMed  Google Scholar 

  • Tanner SF, Ramenghi LA, Ridgway JP, Berry E, Saysell MA, Martinez D, Arthur RJ, Smith MA, Levene MI. Quantitative comparison of intrabrain diffusion in adults and preterm and term neonates and infants. AJR A J Roentgenol 2000; 174:1643–1649

    CAS  Google Scholar 

  • Toft PB, Leth H, Peitersen B, Lou HC, Thomson C. The apparent diffusion coefficient of water in gray and white matter of the infant brain. J Comput Assist Tomogr 1996; 20: 1006–1011

    Article  CAS  PubMed  Google Scholar 

  • Van Buchem MA, Steens SCA, Vrooman HA, Zwinderman AH, McGowan JC, Rassek M, Engelbrecht V. Global estimation of myelination in the developing brain on the basis of magnetization transfer imaging: a preliminary study. AJNR Am J Neuroradiol 2001; 22: 762–766

    PubMed  Google Scholar 

  • van der Knaap MS, Valk J. MR imaging of the various stages of normal myelination during the first year of life. Neuroradiology 1990; 31: 459–470

    Article  PubMed  Google Scholar 

  • van der Knaap MS, van Wezel-Meijler G, Barth PG, Barkhof F, Ader H, Valk J. Normal gyration and sulcation in preterm and term neonates: appearance on MR images. Radiology 1996; 200: 389–396

    PubMed  Google Scholar 

  • Wimberger DM, Roberts TP, Barkovich AJ, Prayer LM, Moseley ME, Kucharczyk J. Identification of ‘premyelination’ by diffusion-weighted MRI. J Comput Assist Tomogr 1995; 19:28–33

    CAS  PubMed  Google Scholar 

  • Yakovlev PI, Lecours AR. The myelogenetic cycles of regional maturation of the brain. In: Minkowski A, Ed. Regional development of the brain in early life. Oxford: Blackwell, 1967: pp 3–70

    Google Scholar 

  • Zhai G, Lin W, Wilber KP, Gerig G, Gilmore JH. Comparison of regional white matter diffusion in healthy neonates and adults performed with a 3.0T head-only MR imaging unit. Radiology 2003; 229: 673–681

    PubMed  Google Scholar 

  • Zilles K, Schleicher A, Langemann C, Amunts K, Morosan P, Palomero-Gallagher N, Schormann T, Mohlberg H, Bürgel U, Steinmetz H, Schlaug G, Roland PE. Quantitative analysis of sulci in the human cerebral cortex: development, regional heterogeneity, gender difference, asymmetry, intersubject variability and cortical architecture. Hum Brain Map 1997; 5: 218–221

    Article  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2005). Myelination and Retarded Myelination. In: Magnetic Resonance of Myelination and Myelin Disorders. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27660-2_4

Download citation

  • DOI: https://doi.org/10.1007/3-540-27660-2_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22286-6

  • Online ISBN: 978-3-540-27660-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics