Skip to main content

An Improved Majorization Algorithm for Robust Procrustes Analysis

  • Conference paper
New Developments in Classification and Data Analysis

Abstract

In this paper, we focus on algorithms for Robust Procrustes Analysis that are used to rotate a solution of coordinates towards a target solution while controlling outliers. Verboon (1994) and Verboon and Heiser (1992) showed how iterative weighted least-squares can be used to solve the problem. Kiers (1997) improved upon their algorithm by using iterative majorization. In this paper, we propose a new method called “weighted majorization” that improves on the method by Kiers (1997). A simulation study shows that compared to the method by Kiers (1997), the solutions obtained by weighted majorization are in almost all cases of better quality and are obtained significantly faster.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • BEATON, A.E. and TUKEY, J.W. (1974): The fitting of power series, meaningful polynomials, illustrated on band-spectroscopic data. Technometrics, 16, 147–185.

    Article  MATH  Google Scholar 

  • CLIFF, N. (1966): Orthogonal rotation to congruence. Psychometrika, 31, 33–42.

    Article  MathSciNet  Google Scholar 

  • BORG, I. and GROENEN P.J.F. (1997): Modern multidimensional scaling: Theory and applications. Springer, New York.

    MATH  Google Scholar 

  • DE LEEUW, J. (1992): Fitting distances by least squares. Tech. Rep. 130, Interdivisonal Program in Statistics, UCLA, Los Angeles, California.

    Google Scholar 

  • DE LEEUW, J. (1994): Block relaxation algorithms in statistics. In: H.-H. Bock and W. Lenski and M. M. Richter (Eds.): Information systems and data analysis. Springer, 308–324.

    Google Scholar 

  • GREEN, B.F. (1952): The orthogonal approximation of an oblique structure in factor analysis. Psychometrika, 17, 429–440.

    Article  MATH  MathSciNet  Google Scholar 

  • GROENEN P.J.F. and GIAQUINTO, P. and KIERS, H.A.L. (2003): Weighted majorization algorithms for weighted least squares decomposition models. Tech. Rep. 9, Econometric Institute, Erasmus University, Rotterdam, The Netherlands.

    Google Scholar 

  • HEISER, W.J. (1987): Correspondence analysis with least absolute residuals. Computational Statistics and Data Analysis, 5, 337–356.

    Article  MATH  Google Scholar 

  • HEISER, W.J. (1995): Convergent computation by iterative majorization: Theory and applications in multidimensional data analysis. In: W. J. Krzanowski (Eds.): Recent advances in descriptive multivariate analysis. Oxford University Press, 157–189.

    Google Scholar 

  • HUBER, P. J. (1964): Robust estimation of a location parameter. Annals of Mathematical Statistics, 35, 73–101.

    MATH  MathSciNet  Google Scholar 

  • HURLEY, J.R. and CATTELL, R.B. (1962): The Procrustes program: Producing direct rotation to test a hypothesized factor structure. Behavioral Science, 7, 258–262.

    Article  Google Scholar 

  • KIERS, H.A.L. (1997): Weighted least squares fitting using iterative ordinary least squares algorithms. Psychometrika, 62, 251–266.

    Article  MATH  MathSciNet  Google Scholar 

  • KIERS, H.A.L. (2002): Setting up alternating least squares and iterative majorization algorithms for solving various matrix optimization problems. Computational Statistics and Data Analysis, 41, 157–170.

    Article  MATH  MathSciNet  Google Scholar 

  • MOSTELLER, F. and TUKEY, J.W. (1977): Data Analysis and Regression. Addison-Wesley, Massachusetts.

    Google Scholar 

  • SCHÖNEMANN, P.H. (1966): A generalized solution of the orthogonal Procrustes problem. Psychometrika, 31, 1–10.

    Article  MATH  MathSciNet  Google Scholar 

  • TEN BERGE, J.M.F. (1993): Least squares optimization in multivariate analysis. DSWO Press, Leiden University, Leiden, The Netherlands.

    Google Scholar 

  • VERBOON, P. (1994): A robust approach to nonlinear multivariate analysis. DSWO Press, Leiden University, Leiden, The Netherlands.

    MATH  Google Scholar 

  • VERBOON, P. and HEISER, W.J. (1992): Resistant orthogonal Procrustes analysis Journal of Classification, 9, 237–256.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin · Heidelberg

About this paper

Cite this paper

Groenen, P.J., Giaquinto, P., Kiers, H.A. (2005). An Improved Majorization Algorithm for Robust Procrustes Analysis. In: Bock, HH., et al. New Developments in Classification and Data Analysis. Studies in Classification, Data Analysis, and Knowledge Organization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27373-5_18

Download citation

Publish with us

Policies and ethics