Skip to main content

Use of Pulsed Magnetic Fields for Quasi-Isentropic Compression Experiments

  • Chapter
High-Pressure Shock Compression of Solids VIII

Part of the book series: High-Pressure Shock Compression of Condensed Matter ((SHOCKWAVE))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aidun, J.B., and Y.M. Gupta (1991), “Analysis of Lagrangian gauge measurements of simple and non-simple plane waves,” J. Appl. Phys. 69, p. 6998.

    Article  Google Scholar 

  2. Al'tshuler, L.V., and B.S. Chekin (1974), “Metrology of high pulsed pressures,” in: Proc. of 1 All-Union Pulsed Pressures Simposium, VNIIFTRI, Moscow vol. 1, pp. 5–22. (in Russian).

    Google Scholar 

  3. Al'tshuler, L.V., S.B. Kormer, A.A. Bakanova, and R.F. Trunin (1960), “The isentropic compressibility of aluminum, copper, lead, and iron at high pressures,” Zh. Eksp. Teor. Fiz. 38, p. 790. (in Russian) Sov. Phys. JETP 11, p. 573.

    Google Scholar 

  4. Al'tshuler, L.V., N.N. Kalitkin, L.V. Kuz'mina, and B.S. Chekin (1977), “Shock adiabats for ultrahigh pressures,” Zh. Eksp. Teor. Fiz. 72, p. 317 (in Russian) Sov. Phys. JETP 45, p. 167.

    Google Scholar 

  5. Asay, J.R. (1997), “The use of shock-structure methods for evaluating highpressure material properties,” Int. J. Impact Engng. 20, p. 27.

    Article  Google Scholar 

  6. Asay, J.R. (2000), “Isentropic compression experiments on the Z accelerator,” in: Shock Compression of Condensed Matter — 1999, (eds. M.D. Furnish, L.C. Chhabildas, and R.S. Hixson) American Institute of Physics, New York, p. 261.

    Google Scholar 

  7. Asay, J.R., and L.C. Chhabildas (1981), “Determination of the shear strength of shock compressed 6061-T6 aluminum,” in: Shock Waves and High-Strain-Rate Phenomena in Metals (eds. M.A. Meyers and L.E. Murr) Plenum Press, New York, p. 417.

    Google Scholar 

  8. Asay, J.R., and G.I. Kerley (1987), “The response of materials to dynamic loading,” Int. J. Impact Engng. 5, p. 69.

    Google Scholar 

  9. Asay J.R., and L.C. Chhabildas (2003), “Paradigms and Challenges in Shock Wave Research,” in: High-Pressure Shock Compression of Solids VI (eds. Y. Horie, L. Davison, and N.N. Thadhani) Springer-Verlag, New York, p. 57.

    Google Scholar 

  10. Asay, J.R., G.R. Fowles, G.E. Duvall, M.H. Miles, and R.F. Tinder (1975), “Effects of point defects on elastic precursor decay in LiF,” J. Appl. Phys. 45, p. 2132.

    Google Scholar 

  11. Asay, J.R., C.A. Hall, K.G. Holland, M.A. Bernard, W.A. Stygar, R.B. Spielman, S.E. Rosenthal, D.H. McDaniel, and D.B. Hayes (2000), “Isentropic compression of iron with the Z accelerator,” in: Shock Compression of Condensed Matter — 1999, (eds. M.D. Furnish, L.C. Chhabildas, and R.S. Hixson) American Institute of Physics, New York, p. 1151.

    Google Scholar 

  12. Benedick, W.B., and J.R. Asay (1976), Bull. Amer. Phys. Soc. 21, p. 1298.

    Google Scholar 

  13. Barker, L.M. (1984), “High-pressure quasi-isentropic impact experiments,” in: Shock Compression of Condensed Matter — 1983, (eds. J.R. Asay, R.A. Graham, and G.K. Straub) North-Holland, Amsterdam, p. 111.

    Google Scholar 

  14. Barker, L.M., and R.E. Hollenbach (1970), “Shock-wave studies of PMMA, fused silica and sapphire.” J. Appl. Phys. 41, p. 4208.

    Article  Google Scholar 

  15. Barker, L.M., and R.E. Hollenbach (1972), “Laser interferometer for measuring the high velocities of any reflecting surface,” J. Appl. Phys. 43, p. 4669.

    Article  Google Scholar 

  16. Barker, L.M., and R.E. Hollenbach (1974), “Shock wave studies of the α-ε phase transition in iron,” J. Appl. Phys. 45, p. 4872.

    Article  Google Scholar 

  17. Barker, L.M., and K. Schuler (1974), “Correction to the velocity-per-fringe relationship for the VISAR interferometer,” J. Appl. Phys. 45, p. 3692.

    Article  Google Scholar 

  18. Barker, L.M., M. Shahinpoor, and L.C. Chhabildas (1983), “Experimental Diagnostic Techniques,” in: High-Pressure Shock Compression of Solids (eds. J.R. Asay and M. Shahinpoor) Springer-Verlag, New York, p. 43.

    Google Scholar 

  19. Belov, S.I., G.V. Boriskov, A.I. Bykov, R.I. Il'kaev, N.B. Luk'yanov, A.Ya. Matveev, O.L. Mikhailova, V.D. Selemir, G.V. Simakov, R.F. Trunin, I.P. Trusov, V.D. Urlin, V.E. Fortov, and A.N. Shuikin (2002), “Shock compression of solid deuterium,” Sov. Phys. JETP Lett. 76, p. 433.

    Article  Google Scholar 

  20. Boriskov, G.V., A.I. Bykov, R.I. Il'kaev, V.D. Selemir, G.V. Simakov, R.F. Trunin, V.D. Urlin, V.E. Fortov, and A.N. Shuikin (2003), “Shock-wave compression of solid deuterium at a pressure of 120GPa,” Dokl. Phys. 48, p. 553.

    Article  Google Scholar 

  21. Boslough, M.B., and J.R. Asay (1993), “Basic principles of shock compression,” in: High-Pressure Shock Compression of Solids (eds. J.R. Asay and M. Shahinpoor) Springer-Verlag, New York, p. 7.

    Google Scholar 

  22. Chhabildas, L.C., and J.R. Asay (1982), “Time-resolved wave profile measurements in copper to megabar pressures,” in: High Pressure in Research and Industry — 8th AIRAPT Conf. VI (eds. C.M. Backman, T. Johanisson, and L. Tegner) Arkitektkopia, Sweden, p. 183.

    Google Scholar 

  23. Chhabildas, L.C., and R.A. Graham (1987), “Techniques and theory of stress measurements for shock wave applications,” in: (eds. R.R. Stout, F.R. Norwood, and M.E. Fourney) AMD 83. American Society of Mechanical Engineers, New York, p. 1.

    Google Scholar 

  24. Collins, G.W., L.B. DaSilva, P. Celliers, D.M. Gold, M.E. Foord, R.J. Wallace, A. Ng, S.V. Weber, K.S. Budil, and R. Cauble (1998), “Measurements of the equation of state of deuterium at the fluid insulator-metal transition,” Science 281, p. 1178.

    Article  PubMed  Google Scholar 

  25. Da Silva, L.B., P. Celliers, G.W. Collins, K.S. Budil, N.C. Holmes, T.W. Barbee Jr., B.A. Hammel, J.D. Kilkenny, R.J. Wallace, M. Ross, R. Cauble, A. Ng, and G. Chiu (1997), “Absolute equation of state measurements on shocked liquid deuterium up to 200GPa (2 Mbar),” Phys. Rev. Lett. 78, p. 483.

    Article  Google Scholar 

  26. Davis, J.-P. (2004), “Quasi-isentropic compression of iron,” Private communication.

    Google Scholar 

  27. Davis, J.-P., and D.B. Hayes (2003), “Isentropic compression experiments on dynamic solidification in tin,” in: Proceedings of the 13th APS topical group conference on shock compression science of condensed matter — 2003, July 20–25, 2003, Portland Oregon.

    Google Scholar 

  28. Davis, J.-P. et al. (2004), “Quasi-isentropic response of aluminum,” Private communication.

    Google Scholar 

  29. Davison, L., and R.A. Graham (1979), “Shock compression of solids,” Physics Reports 55, p. 257.

    Article  Google Scholar 

  30. Desjarlais, M.P. (2001), “Practical improvements to the Lee-More conductivity near the metal-insulator transition,” Contrib. Plasma Phys. 41, p. 267.

    Article  Google Scholar 

  31. Desjarlais, M.P. (2003), “Density functional calculations of the liquid deuterium Hugoniot, reshock and reverberation timing,” Phys. Rev. B 68, p. 064204.

    Article  Google Scholar 

  32. Desjarlais, M.P., J.D. Kress, and L.A. Collins (2002), “Electrical conductivity for warm, dense aluminum plasmas and liquids,” Phys. Rev. E 66, p. 025401.

    Article  Google Scholar 

  33. Ding, J.L., J.R. Asay, and M.D. Knudson (2003), “Thermal and mechanical analysis of material response under ramp and shock loading,” Bull. Amer. Phys. Soc. 48, p. 83.

    Google Scholar 

  34. Dolan, D.H., III (2003), “Time-dependent freezing of water under multiple shock wave compression,” Ph.D. thesis, Washington State University.

    Google Scholar 

  35. Dolan, D.H., III, and Y.M. Gupta (2003), “Time dependent freezing of water under dynamic compression,” Chem. Phys. Lett. 374, p. 608.

    Article  Google Scholar 

  36. Duvall, G.E., and R.A. Graham (1977), “Phase transitions under shock wave loading,” Rev. Mod. Phys. 49, p. 523.

    Article  Google Scholar 

  37. Edwards, J., K.T. Lorenz, B.A. Remington, S. Pollaine, J. Colvin, D. Braun, B.F. Lasinski, D. Reisman, J.M. McNaney, J.A. Greenbough, R. Wallace, H. Louis, and D. Kalantar (2004), “Laser-driven plasma loader for shockless compression and acceleration of samples in the solid state,” Phys. Rev. Lett. 92, p. 075002-1.

    Google Scholar 

  38. Fortov, V.E. (2004), “Aluminum phase diagram,” Private communication.

    Google Scholar 

  39. Fowles, G.R. (1961), “Shock wave compression of hardened and annealed 2024 aluminum,” J. Appl. Phys. 32, p. 1475.

    Article  Google Scholar 

  40. Glushak, B.L., A.P. Zharkov, M.V. Zhernokletov, V.Ya. Ternovoi, A.S. Filimonov, and V.E. Fortov (1989), “Experimental investigation of the thermodynamics of dense plasmas formed from metals at high energy concentrations,” Zh. Eksp. Teor. Fiz. 96, p. 1301. (in Russian) [trans. in Sov. Phys. JETP 69, p. 739].

    Google Scholar 

  41. Hall, C.A. (2003), “Isentropic compression experiments on the Sandia Z accelerator,” Phys. Plasmas 7, p. 2069.

    Article  Google Scholar 

  42. Hall, C.A., J.R. Asay, M.D. Knudson, W.A. Stygar, R. Spielman, T.D. Pointon, D.B. Reisman, A. Toor, and R.C. Cauble (2001), “Experimental configuration for isentropic compression of solids using pulsed magnetic loading,” Rev. Sci. Instrum. 72, p. 3587.

    Article  Google Scholar 

  43. Hall, C.A., M.D. Knudson, J.R. Asay, R. Lemke, B. Oliver (2002a), “High velocity flyer plate launch capability on the Sandia Z accelerator,” Int. J. Impact Engng. 26, p. 275.

    Article  Google Scholar 

  44. Hall, C.A., J.R. Asay, M.D. Knudson, D.B. Hayes, R.W. Lemke, J.-P. Davis, and C. Deeney (2002b), “Recent advances in quasi-isentropic compression experiments on the Sandia Z accelerator,” in: Shock Compression of Condensed Matter–2001 (eds. M.D. Furnish, N. Thadhani, and Y. Horie) American Institute of Physics, New York, p. 1163.

    Google Scholar 

  45. Hare, D.E., D.B. Reisman, F. Garcia, L.G. Green, J.W. Forbes, M.D. Furnish, C. Hall, and R.J. Hickman (2003), “The isentrope of unreacted LX-04 to 170 kbar,” in: Proceedings of the 13th APS topical group conference on shock compression science of condensed matter-2003, July 20–25, 2003, Portland, Oregon.

    Google Scholar 

  46. Hawke, R., D.E. Duerre, J.G. Huebel, J.G. Klapper, D.J. Steinberg, R.N. Keeler (1972), “Method of isentropically compressing materials to several megabars,” J. Appl. Phys. 43, p. 2734.

    Google Scholar 

  47. Hayes, D.B. (2001), “Unsteady compression waves in interferometer windows,” J. Appl. Phys. 89, p. 6484.

    Article  Google Scholar 

  48. Hayes, D.B., and C.A. Hall (2002), “Correcting free surface effects by integrating the equations of motion backward in space,” in: Shock Compression of Condensed Matter — 2001 (eds. M.D. Furnish, N. Thadhani, and Y. Horie) p. 1177.

    Google Scholar 

  49. Hayes, D.B., C.A. Hall, J.R. Asay, M.D. Knudson (2003), “Continuous index of refraction measurements to 20 GPa in Z-cut sapphire,” J. Appl. Phys. 94, p. 2331.

    Article  Google Scholar 

  50. Holmes, N.C. (1994). “Shock compression of low-density foams,” in: High-Pressure Science and Technology — 1993 (eds. S.C. Schmidt, J.W. Shaner, G.A. Samara, and M. Ross). American Institute of Physics, New York, p. 153.

    Google Scholar 

  51. Jones, S.C., M.C. Robinson, and Y.M. Gupta (2003), “Ordinary refractive index of sapphire in uniaxial tension and compression along the c axis,” J. Appl. Phys. 93, p. 1023.

    Article  Google Scholar 

  52. Kerley, G.I. (1987), “Theoretical equation of state for aluminum,” Int. J. Impact Engng. 5, p. 441.

    Google Scholar 

  53. Kerley, G.I. (1998), Equations of State for Aluminum and Beryllium, Kerley Publishing Services Report No. KPS98-1.

    Google Scholar 

  54. Kerley, G.I. (2003), Equations of state for hydrogen and deuterium. Sandia National Laboratories Report SAND2003-3613.

    Google Scholar 

  55. Knudson, M.D. (2004), “Unloading response of aluminum to impact stresses of 500 GPa,” manuscript in preparation.

    Google Scholar 

  56. Knudson, M.D., Hanson DL, Bailey JE, Hall CA, Asay JR, Anderson WW (2001) Equation of state measurements in liquid deuterium to 70GPa. Phys Rev Lett 87:225501-1.

    Article  Google Scholar 

  57. Knudson, M.D., D.L. Hanson, J.E. Bailey, C.A. Hall, and J.R. Asay (2003a), “Use of a wave reverberation technique to infer the density compression of shocked liquid deuterium to 75GPa,” Phys. Rev. Lett. 90, p. 035505-1.

    Article  Google Scholar 

  58. Knudson, M.D., R.W. Lemke, D.B. Hayes, C.A. Hall, C. Deeney, and J.R. Asay (2003b), “Near-absolute Hugoniot measurements in aluminum to 500 GPa using a magnetically accelerated flyer plate technique,” J. Appl. Phys. 94, p. 4420.

    Google Scholar 

  59. Knudson, M.D., C.A. Hall, R. Lemke, C. Deeney, and J.R. Asay (2003c), “High velocity flyer plate launch capability on the Sandia Z accelerator,” Int. J. Impact Engng. 29, p. 377.

    Article  Google Scholar 

  60. Knudson, M.D., D.L. Hanson, J.E. Bailey, C.A. Hall, J.R. Asay, and C. Deeney (2004), “Principal Hugoniot, reverberating wave, and mechanical reshock measurements of liquid deuterium to 400GPa using plate impact techniques,” accepted for publication in Phys. Rev. B.

    Google Scholar 

  61. Kormer, S.B., A.I. Funtikov, V.D. Urlin, and A.N. Kolesnikova (1962), “Dynamical compression of porous metals and the equation of state with variable specific heat at high temperatures,” Zh. Eksp. Teor. Fiz. 42, p. 626 (in Russian) Sov. Phys. JETP 15, p. 477].

    Google Scholar 

  62. Lawrence, R.J., D.E. Grady, and C.A. Hall (2003), “The response of ceramic powders to high-level quasi-isentropic dynamic loads,” in: Proceedings of the 13th APS topical group conference on shock compression science of condensed matter — 2003, July 20–25, 2003, Portland, Oregon.

    Google Scholar 

  63. Lemke, R.W., M.D. Knudson, C.A. Hall, T.A. Haill, M.P. Desjarlais, J.R. Asay, and T.A. Mehlhorn (2003a), “Characterization of magnetically accelerated flyer plates,” Phys. Plasmas 10, p. 1092.

    Article  Google Scholar 

  64. Lemke, R.W., M.D. Knudson, A.C. Robinson, T.A. Haill, K.W. Struve, J.R. Asay, and T.A. Mehlhorn (2003b), “Self-consistent, two-dimensional, magnetohydrodynamic simulations of magnetically driven flyer plates,” Phys. Plasmas 10, p. 1867.

    Article  Google Scholar 

  65. Lenosky, T.J., J.D. Kress, and L.A. Collins (1997), “Molecular-dynamics modeling of the Hugoniot of shocked liquid deuterium,” Phys. Rev. B 56, p. 5164.

    Article  Google Scholar 

  66. Lindl, J. (1995), “Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain,” Phys. Plasmas 2, p. 3933.

    Article  Google Scholar 

  67. Matzen, M.K. (1997), “Z pinches as intense x-ray sources for high-energy density physics applications,” Phys. Plasmas 4, p. 1519.

    Google Scholar 

  68. Mitchell A.C., and W.J. Nellis (1981), “Shock compression of aluminum, copper, and tantalum,” J. Appl. Phys. 52, p. 3363.

    Article  Google Scholar 

  69. Nellis, W.J., A.C. Mitchell, M. van Thiel, G.J. Devine, and R.J. Trainor (1983), “Equation-of-state data for molecular hydrogen and deuterium at shock pressures in the range 2-76GPa (20-760 kbar),” J. Chem. Phys. 79, p. 1480.

    Article  Google Scholar 

  70. Nesterenko, V. (2001), Dynamics of Heterogeneous Materials, Springer-Verlag, New York.

    Google Scholar 

  71. Nguyen, J. (2003), “Dynamic compression by design at LLNL gas gun,” Bull. Amer. Phys. Soc. 48, p. 23.

    Google Scholar 

  72. Perez, M. (1990), “The MIVAR: a ramp-wave generator fabricated by the plasma spray technique,” in: Shock Compression of Condensed Matter — 1989 (eds. S.C. Schmidt, J.N. Johnson, and L.W. Davison) North-Holland, Amsterdam, p. 751.

    Google Scholar 

  73. Reisman, D.B. (2003), “Ramp loading of uranium alloys,” Private communication.

    Google Scholar 

  74. Reisman, D.B., A. Toor, R.C. Cauble, C.A. Hall, J.R. Asay, M.D. Knudson, and M.D. Furnish (2001), “Magnetically driven isentropic compression experiments on the Z accelerator,” J. Appl. Phys. 89, p. 1625.

    Article  Google Scholar 

  75. Reisman, D.B., W.G. Wolfer, A. Elsholz, and M.D. Furnish (2003), “Isentropic compression of irradiated stainless steel on the Z accelerator,” J. Appl. Phys. 93, p. 8952.

    Article  Google Scholar 

  76. Remington, B.A., G. Bazan, J. Belak, E. Bringa, M. Caturia, J.D. Colvin, M.J. Edwards, S.G. Glendinning, D. Ivanov, B. Kad, D. Kalantar, M. Kumar, B.F. Lasinski, K.T. Lorenz, J.M. McNaney, D.D. Meyerhofer, M.A. Meyers, S.M. Pollaine, D. Rowley, M. Schneider, J.S. Stolken, J.S. Wark, S.V. Weber, W.G. Wolfer, and B. Yaakobi (2003a), “Materials science under extreme conditions of pressure and strain rate,” submitted to Metall. And Materials Transactions A.

    Google Scholar 

  77. Remington, B.A., R.M. Cavallo, M.J. Edwards, B.F. Lasinski, K.T. Lorenz, H.E. Lorenzana, J. McNaney, S.M. Pollaine, D.P. Rowley (2003b), Materials science at the extremes of pressure and strain rate, Lawrence Livermore National Laboratory Report UCRL-JC-152288.

    Google Scholar 

  78. Rigg, P.A., W. Greeff, M.D. Knudson, D.B. Hayes, R.S. Hixson, and G.T. Gray III (2003), “Investigation shock-induced phase transitions in zirconium,” in: Proceedings of the 13th APS topical group conference on shock compression science of condensed matter — 2003, July 20–25, 2003, Portland, Oregon.

    Google Scholar 

  79. Ross, M. (1998), “Linear-mixing model for shock-compressed liquid deuterium,” Phys. Rev. B 58, p. 669.

    Article  Google Scholar 

  80. Saumon, D., and T. Guillot (2004), “Shock compression of deuterium and the interiors of Jupiter and Saturn,” Accepted for publication Astrophysical Journal.

    Google Scholar 

  81. Seidel, D.B., M.L. Kiefer, R.S. Coats, T.D. Pointon, J.P. Quintenz, and W.A. Johnson (1991), “The 3D, electromagnetic, particle in cell code, QUICKSILVER,” in: CP90 Europhysics conference on computational physics (ed. A. Tenner) World Scientific, Amsterdam, pp. 475–482.

    Google Scholar 

  82. Setchell, R.E. (2002), “Refractive index of sapphire at 532 nm under shock compression,” J. Appl. Phys. 91, p. 2833.

    Article  Google Scholar 

  83. Sharp, G. (2002), Magnetic diffusion in conductors at ultra-high current density, Ph.D. thesis, University of New Mexico.

    Google Scholar 

  84. Simonenko, V.A., N.P. Voloshin, A.S. Vladimirov, A.P. Nagibin, V.N. Nogin, V.A. Popov, V.A. Sal'nikov, and Yu.A. Shoidin (1985), “Absolute measurements of shock compressibility of aluminum at pressures ≥ 1 TPa,” Zh. Eksp. Teor. Fiz. 88, p. 1452. (in Russian) Sov. Phys. JETP 61, p. 869.

    Google Scholar 

  85. Summers, R.M., J.S. Peery, M.W. Wong, E.S. Hertel Jr, T.G. Trucano, and L.C. Chhabildas (1997), “Recent progress in Alegra development and applications to ballistic impacts,” Int. J. Impact Engng. 20, p. 779.

    Article  Google Scholar 

  86. Trott, W.M., J.N. Castaneda, J.J. O'Hare, M.R. Baer, L.C. Chhabildas, M.D. Knudson, J.-P. Davis, and J.R. Asay (2001), “Dispersive velocity measurements in heterogeneous materials,” Bull. Amer. Phys. Soc. 46, p. 31.

    Google Scholar 

  87. Trunin, R.F., W.J. Nellis (2003), Shock compression of liquid deuterium at 54 GPa, Lawrence Livermore National Laboratory Report UCRL-JC-152886.

    Google Scholar 

  88. Vogler, T.J (2004), “Determining compressive strength for ramp loading,” Private communication.

    Google Scholar 

  89. Volkov, L.P., N.P. Voloshin, A.S. Vladimirov, V.N. Nogin, and V.A. Simonenko (1981), “Shock compressibility of aluminum at pressure 10 Mbar,” Pis'ma Zh. Eksp. Teor. Fiz. 31, p. 623. (in Russian) Sov. Phys. JETP Lett. 31, p. 588].

    Google Scholar 

  90. Wise, J.L., and L.C. Chhabildas (1986), “Laser interferometer measurements of refractive index in shock-compressed materials,” in: Shock Waves in Condensed Matter (ed. Y.M. Gupta) Plenum Publishing Corp., New York, p. 441.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Asay, J.R., Knudson, M.D. (2005). Use of Pulsed Magnetic Fields for Quasi-Isentropic Compression Experiments. In: Chhabildas, L.C., Davison, L., Horie, Y. (eds) High-Pressure Shock Compression of Solids VIII. High-Pressure Shock Compression of Condensed Matter. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27168-6_10

Download citation

Publish with us

Policies and ethics