Skip to main content

Retinal Implants

  • Chapter
Vitreo-retinal Surgery

Part of the book series: Essentials in Ophthalmology ((ESSENTIALS))

  • 647 Accesses

1.8 Summary

Retinal implants have been designed and fabricated to restore vision in blind RP patients. These implants work by activating neural retinal cells not affected by the degenerative process with an electrode array placed onto (epiretinal approach) or underneath (subretinal approach) the retina. Surgical procedures have been developed for both types of visual prosthesis. Animal experiments have shown that local activation of the visual cortex can be achieved with stimulation currents and charge transfers which are in a biocompatible range. Initial clinical trials in blind human subjects have shown that visual percepts can be achieved. It is hoped that with this technical approach ambulatory vision can be restored in otherwise not treatable degenerative diseases of the retina.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 159.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 209.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ali RA, Reichel MB, Trasher AJ, Levinsky RJ, Kinnon C, Kanuga N, Hunt DM, Battacharya SS (1996) Gene transfer into the mouse retina by an adeno associated viral vector.Hum Mol Genet 5:591–594

    Article  PubMed  CAS  Google Scholar 

  2. Alteheld N, Vobig MA, Marzella G, Berk H, Shojaei R, Heimann U, Held S, Walter P, Bartz-Schmidt KU (2002) Biocompatibility tests on the intraocular vision aid IOVA. Biomed Tech (Berl) 47Suppl 1:176–178

    Google Scholar 

  3. Bennett J, Zeng Y, Bajwa R, Klatt L, Li Y, Maguire AM (1998) Adenovirus mediated delivery of rhodopsin-promoted bcl-2 results in a delay in photoreceptor cell death in the rd/rd mouse.Gene Ther 5:1156–1164

    Article  PubMed  CAS  Google Scholar 

  4. Berk H, Held S, Alteheld N, Shojaei R, Vobig MA, Marzella G, Walter P (2002) Explantation of tack fixated epiretinal microcontact foils in rabbits — preliminary observations. ARVO Abstract 4456

    Google Scholar 

  5. Berson EL, Juancho F, Remulla C, Rosner B, Sandberg MA, Weigel-DiFranco C (1996) Evaluation of patients with retinitis pigmentosa receiving electric stimulation, ozonated blood, and ocular surgery in Cuba. Arch Ophthalmol 114:560–563

    PubMed  CAS  Google Scholar 

  6. Berson EL, Rosner B, Sandberg MA, Hayes KC, Nicholson BW, Weigel-Di Franco C, Willet W (1993) A randomized trial of vitamin A and vitamin E supplementation for retinitis pigmentosa. Arch Ophthalmol 111:761–772

    PubMed  CAS  Google Scholar 

  7. Brindley GS (1970) Sensations produced by electrical stimulation of the occipital poles of the cerebral hemispheres, and their use in constructing visual prostheses. Ann R Coll Surg Engl 47:106–108

    PubMed  CAS  Google Scholar 

  8. Brindley GS, Lewin WS (1968) The sensations produced by electrical stimulation of the visual cortex. J Physiol 196:479–493

    PubMed  CAS  Google Scholar 

  9. Chow AY, Chow VY (1997) Subretinal electrical stimulation of the rabbit retina. Neurosci Lett 225:13–16

    Article  PubMed  CAS  Google Scholar 

  10. Chow AY, Packo KH, Pollack JS, Schuchard RA (2003) Subretinal artificial silicon retina microchip implantation in retinitis pigmentosa patients: long term follow-up. ARVO Abstract 4205

    Google Scholar 

  11. Chow AY, Pardue MT, Chow VY, Peyman GA, Liang C, Perlman JI, Peachey NS (2001) Implantation of silicon chip microphotodiode arrays into the cat subretinal space. IEEE Trans Neural Syst Rehabil Eng 9:86–95

    Article  PubMed  CAS  Google Scholar 

  12. Crampon MA, Brailovski V, Sawan M, Trochu F (2002) Nerve cuff electrode with shape memory alloy armature: design and fabrication. Biomed Mater Eng 12:397–410

    PubMed  Google Scholar 

  13. Dawson WW, Radtke ND (1977) The electrical stimulation of the retina by indwelling electrodes. Invest Ophthalmol Vis Sci 16:249–252

    PubMed  CAS  Google Scholar 

  14. Delbeke J, Oozeer M, Veraart C (2003) Position, size and luminosity of phosphenes generated by direct optic nerve stimulation.Vision Res 43:1091–1102

    Article  PubMed  Google Scholar 

  15. Dobelle WH (1994) Artificial vision for the blind. The summit may be closer than you think.ASAIO J 40:919–922

    PubMed  CAS  Google Scholar 

  16. Dobelle WH (2000) Artificial vision for the blind by connecting a television camera to the visual cortex.ASAIO J 46:3–9

    Article  PubMed  CAS  Google Scholar 

  17. Eckmiller R (1995) Towards retina implants for improvement of vision in human with RP — challenges and first results, vol. 1. Proc WCNN, INNS Press, Lawrence Erlbaum Associates, Hillsdale, pp 228–233

    Google Scholar 

  18. Eckmiller R (1996) Retina implants with adaptive retina encoders. RESNA Research Symposium, pp 21–24

    Google Scholar 

  19. Eckmiller R (1997) Learning retina implants with epiretinal contacts. Ophthalmic Res 29:281–289

    Article  PubMed  CAS  Google Scholar 

  20. Eysel UT, Walter P, Gekeler F, Schwahn H, Zrenner E, Sachs HG, Gabel VP, Kisvárday ZF (2002) Optical imaging reveals 2-dimensional patterns of cortical activation after local retinal stimulation with sub-and epiretinal visual prostheses. ARVO Abstract 4486

    Google Scholar 

  21. Ford M, Bragadottir R, Rakoczy PE, Narfstrom K (2003) Gene transfer in the RPE65 null mutation dog: relationship between construct volume, visual behavior and electroretinographic (ERG) results. Doc Ophthalmol 107:79–86

    Article  PubMed  Google Scholar 

  22. Fuortes MGF (1959) Initiation of impulses in visual cells of Limulus. J Physiol 148:14–28

    PubMed  CAS  Google Scholar 

  23. Guenther E, Troger B, Schlosshauer B, Zrenner E (1999) Long-term survival of retinal cell cultures on retinal implant materials.Vision Res 39:3988–3994

    Article  PubMed  CAS  Google Scholar 

  24. Hartline HK, Wagner HG, MacNichol EF Jr (1952) The peripheral origin of nervous activity in the visual system.Cold Spring Harb Symp Quant Biol 17:125–141

    PubMed  CAS  Google Scholar 

  25. Humayun M, Greenberg RJ, Mech BV, Yanai D, Mahadevappa M, van Boemel G, Fujii GY, Weiland JD, de Juan E (2003) Chronically implanted intraocular retinal prosthesis in two blind subjects. ARVO Abstract 4206

    Google Scholar 

  26. Humayun MS, de Juan E, Dagnelie G, Greenberg RJ, Probst RH, Phillips DH (1996) Visual perception elicited by electrical stimulation of retina in blind subjects. Arch Ophthalmol 114:40–46

    PubMed  CAS  Google Scholar 

  27. Huppertz J, Hausschild R, Hosticka BJ, Kneip T, Müller S, Schwarz M (1997) Fast CMOS imaging with high dynamic range. In: Charge coupled devices and advanced image sensors. Bruges Workshop Proceedings, IEEE Piscataway

    Google Scholar 

  28. Kohler K, Hartmann JA, Werts D, Zrenner E (2001) Histological studies of retinal degeneration and biocompatibility of subretinal implants. Ophthalmologe 98:364–368

    Article  PubMed  CAS  Google Scholar 

  29. Kohn DB, Sadelain M, Glorioso JC (2003) Occurrence of leukaemia following gene therapy of X-linked SCID.Nat Rev Cancer 3:477–488

    Article  PubMed  CAS  Google Scholar 

  30. Krumpaszky HG, Klauss V (1996) Epidemiology of blindness and eye disease. Ophthalmologica 210:1–84

    Article  PubMed  CAS  Google Scholar 

  31. Lau D, McGee LH, Zhou S, Rendahl KG, Manning WC, Escobedo JA, Flannery JG (2000) Retinal degeneration is slowed in transgenic rats by AAV-mediated delivery of FGF-2. Invest Ophthalmol Vis Sci 41:3622–3633

    PubMed  CAS  Google Scholar 

  32. Majji AB, Humayun MS, Weiland JD, Suzuki S, D’Anna SA, de Juan E Jr (1999) Long-term histological and electrophysiological results of an inactive epiretinal electrode array implantation in dogs. Invest Ophthalmol Vis Sci 40:2073–2081

    PubMed  CAS  Google Scholar 

  33. Normann RA, Maynard EM, Rousche PJ, Warren DJ (1999) A neural interface for a cortical vision prosthesis.Vision Res 39:2577–2587

    Article  PubMed  CAS  Google Scholar 

  34. Pelaez O (1997) Evaluation of patients with retinitis pigmentosa receiving electric stimulation, ozonated blood, and ocular surgery in Cuba.Arch Ophthalmol 115:133–134

    PubMed  CAS  Google Scholar 

  35. Peyman G, Chow AY, Liang C, Chow VY, Perlman JI, Peachey NS (1998) Subretinal semiconductor microphotodiode array. Ophthalmic Surg Lasers 29:234–241

    PubMed  CAS  Google Scholar 

  36. Rizzo JF 3rd, Wyatt J, Humayun M, de Juan E, Liu W, Chow A, Eckmiller R, Zrenner E, Yagi T, Abrams G (2001) Retinal prosthesis: an encouraging first decade with major challenges ahead. Ophthalmology 108:13–14

    Article  PubMed  Google Scholar 

  37. Rizzo JF 3rd, Wyatt J, Loewenstein J, Kelly S, Shire D (2003) Methods and perceptual thresholds for short term electrical stimulation of human retina with microelectrode arrays. Invest Ophthalmol Vis Sci 44:5355–5361

    Article  PubMed  Google Scholar 

  38. Schanze T, Greve N, Hesse L (2003) Towards the cortical representation of form and motion stimuli generated by a retina implant. Graefes Arch Clin Exp Ophthalmol 241:685–693

    Article  PubMed  Google Scholar 

  39. Schanze T, Wilms M, Eger M, Hesse L, Eckhorn R (2002) Activation zones in cat visual cortex evoked by electrical retina stimulation. Graefes Arch Clin Exp Ophthalmol 240:947–954

    PubMed  Google Scholar 

  40. Schwahn HN, Gekeler F, Kohler K, Kobuch K, Sachs HG, Schulmeyer F, Jakob W, Gabel VP, Zrenner E (2001) Studies on the feasibility of a subretinal visual prosthesis: data from Yucatan micropig and rabbit. Graefes Arch Clin Exp Ophthalmol 239:961–967

    PubMed  CAS  Google Scholar 

  41. Skogstad M, Bast-Pettersen R, Tynes T, Bjornsen D, Aaserud O (1994) Treatment with hyperbaric oxygen. Illustrated by the treatment of a patient with retinitis pigmentosa. Tidsskr Nor Laegeforen 114:2480–2483

    PubMed  CAS  Google Scholar 

  42. Takahashi M, Miyoshi H, Verma IM, Gage FH (1999) Rescue from photoreceptor degeneration in the rd mouse by human immunodeficiency virus vector mediated gene transfer. J Virol 73:7812–7816

    PubMed  CAS  Google Scholar 

  43. Tomita T (1958) Mechanism of lateral inhibition in the eye of Limulus. J Neurophysiol 21:419–429

    PubMed  CAS  Google Scholar 

  44. Veraart C, Raftopoulos C, Mortimer JT, Delbeke J, Pins D, Michaux G, Vanlierde A, Parrini S, Wanet-Defalque MC (1998) Visual sensations produced by optic nerve stimulation using an implanted self-sizing spiral cuff electrode. Brain Res 30: 813:181–186

    Article  PubMed  CAS  Google Scholar 

  45. Walter P, Heimann K (2000) Evoked cortical potentials after electrical stimulation of the inner retina in rabbits. Graefes Arch Clin Exp Ophthalmol 238:315–318

    Article  PubMed  CAS  Google Scholar 

  46. Walter P, Szurman P, Vobig M, Berk H, Ludtke-Handjery HC, Richter H, Mittermayer C, Heimann K, Sellhaus B (1999) Successful long-term implantation of electrically inactive epiretinal microelectrode arrays in rabbits. Retina 19:546–552

    Article  PubMed  CAS  Google Scholar 

  47. Warren DJ, Fernandez E, Normann RA (2001) High-resolution two-dimensional spatial mapping of cat striate cortex using a 100-microelectrode array.Neuroscience 105:19–31

    Article  PubMed  CAS  Google Scholar 

  48. William LL, Shannon BT, Chambers RB, Leguire LE, Davidorf FH (1992) Systemic immunostimulation after retinal laser treatment in retinitis pigmentosa. Clin Immunol Immunopathol 64:78–83

    Article  Google Scholar 

  49. Wolff JG, Delacour J, Carpenter RH, Brindley GS (1968) The patterns seen when alternating electric current is passed through the eye. Q J Exp Psychol 20:1–10

    PubMed  CAS  Google Scholar 

  50. Zrenner E, Stett A, Weiss S, Aramant RB, Guenther E, Kohler K, Miliczek KD, Seiler MJ, Haemmerle H (1999) Can subretinal microphotodiodes successfully replace degenerated photoreceptors? Vision Res 39:2555–2567

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Walter, P. (2005). Retinal Implants. In: Kirchhof, B., Wong, D. (eds) Vitreo-retinal Surgery. Essentials in Ophthalmology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27152-X_1

Download citation

  • DOI: https://doi.org/10.1007/3-540-27152-X_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20044-4

  • Online ISBN: 978-3-540-27152-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics