Skip to main content

The Number of Bound States of One-Body Schroedincer Operators and the Weyl Problem

  • Chapter
The Stability of Matter: From Atoms to Stars
  • 2705 Accesses

Abstract

If Ñ(Ω, λ) is the number of eigenvalues of −Δ in a domain Ω In a suitable Rieinannian manifold of dimension n, we derive bounds of the form Ñ (Ω,λ)≤ Dnλn/2 |Ω| for all Ω, λ, n, Likewise, if Nα (V) is the number of nonpositive eigenvalues of −Δ + V(x) which are ≤ α ≤ 0, then Nα(V)≤ LnʃM [V − α]Stack n/2 for all α and V and n ≥ 3.

1980 Mathematics Subject Classification 35P15.

Work supported by U.S. National Foundation grants PHYS-7825390 and INT 78-01160.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Bibliocraphy

  1. H. Weyl, “Das asymptotische Verteilungsgesetz der Eigenwerte Linearer partieller Differentialgleichungen”, Math. Ann. 71 (1911), 441–469.

    Article  MathSciNet  Google Scholar 

  2. M. Kac, “Can one hear the shape of a drum?”, Slaught Memorial Papers, no. 11, Amer. Mach. Monthly 73 (1966), no. 4, part II, 1–23.

    Article  MATH  MathSciNet  Google Scholar 

  3. M. Reed and B. Simun, Methods of Modern Mathematical Physics, Acad. Press, N. Y., 1978.

    MATH  Google Scholar 

  4. G. V. Rosenbljum, “Distribution of the discrete spectrum of singular differential operators”, Dokl. Aka. Nauk SSSR, 202 (1972), 1012–1015 (MR 45 #4216). The details are given in “Distribution of the discrete spectrum of singular differential Operators”, Izv. Vyss. Ucebn, Zaved, Matematika 164 (1976), 75–86. [English trans. Sov. Math. (Iz. VUZ) 20 (1976), 63–71.]

    Google Scholar 

  5. B. Simon, “Weak trace ideals and the number of bound states of Schroedinger Operators”, Trans. Amer. Math. Soc.. 224 (1976), 367–380.

    ADS  MATH  MathSciNet  Google Scholar 

  6. M. Cwikel, “Weak type estimates for Singular values and the number of bound states of Schroedinger operators”, Ann. Math. 106 (1977), 93–100.

    Article  MATH  MathSciNet  Google Scholar 

  7. E. Lieb, “Bounds on the eigenvalues of the Laplace and Schroedinger Operators”, Bull. Amer. Math. Soc. 82 (1976), 751–753.

    Article  MATH  MathSciNet  Google Scholar 

  8. B. Simon, Functional Integration and Quantum Physics, Academic Press, N. Y., to appear 1979.

    MATH  Google Scholar 

  9. E. Lieb and W. Thirring, “Inequalities for the moments of the eigenvalues of the Schroedinger equation and their relation to Sobolev “inequalities”, in Studies in Mathematical Physics: Essays in Honor of Valentine Bargmann (E. Lieb, B. Simon and A. Wightman eds.), Princeton Univ. Press, Princeton, N. J., 1976. These ideas were first announced in “Bound for the kinetic energy of fermions which proves the stability of matter”, Phys. Rev. Lett. 35 (1975), 687–689, Errata 35 (1975), 1316.

    Google Scholar 

  10. M. Aizenman and E. Lieb, “On semi-classical bounds for eigenvalues of Schroedinger Operators”, Phys. Lett. 66A (1978), 427–429.

    ADS  MathSciNet  Google Scholar 

  11. M. Birman, “The spectrum of singular boundary problems”, Math. Sb. 55 (1961), 124–174. (Amer. Math. Soc. Trans. 53 (1966), 23–80).

    MathSciNet  Google Scholar 

  12. J. Schwinger, “On the bound states of a given potential”, Proc. Nat. Acad. Sci. U.S.A. 47 (1961), 122–129.

    Article  ADS  MathSciNet  Google Scholar 

  13. M. Kac, “On some connections between probability theory and differential and integral equations”, Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, Univ. of Catif. Press, Berkeley, 1951, 189–215.

    Google Scholar 

  14. K. R. Ito, “Estimation of the functional determinants in quantum field theortes”, Res. Inst. for Math. Sci., Kyoto Univ. (1979), preprint.

    Google Scholar 

  15. E. Lieb, “The stability of matter”, Rev. Mod. Phys. 48 (1976), 553–569.

    Article  ADS  MathSciNet  Google Scholar 

  16. V. Glaser, H. Grosse and A. Martin, “Bounds on the number of eigenvalues of the Schroedinger Operator”, Commun. Math. Phys. 59 (1978), 197–212.

    Article  MathSciNet  MATH  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg New York

About this chapter

Cite this chapter

Lieb, E.H. (2005). The Number of Bound States of One-Body Schroedincer Operators and the Weyl Problem. In: Thirring, W. (eds) The Stability of Matter: From Atoms to Stars. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27056-6_18

Download citation

Publish with us

Policies and ethics