Skip to main content

Towards Understanding the Neurobiology of Mammalian Puberty: Genetic, Genomic and Proteomic Approaches

  • Conference paper
Hormones and the Brain

Summary

The pubertal activation of gonadotropin hormone-releasing hormone (GnRH) release in rodents and primates is brought about by coordinated changes in excitatory and inhibitory inputs to GnRH neurons. These inputs include both transsynaptic and glia-to-neuron communication pathways. Using cellular and molecular approaches in combination with transgenic animal models and high throughput procedures for gene discovery, we are beginning to gain insights into the basic mechanisms underlying this dual transsynaptic/glial control of GnRH secretion, and hence, the initiation of mammalian puberty. The results thus far obtained suggest that the initiation of puberty requires reciprocal neuron-glia communication involving excitatory amino acids and growth factors, changes in synaptic make-up and glia-neuron adhesiveness, and the transcriptional regulation of genes required for the normal function of both neurons and glial cells involved in the control of GnRH secretion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Apostolakis EM, Garai J, Lohmann JE, Clark JH, O’Malley BW (2000) Epidermal growth factor activates reproductive behavior independent of ovarian steroids in female rodents. Mol Endocrinol 14:1086–1098

    Article  PubMed  Google Scholar 

  • Betz WJ, Mao F, Smith CB (1996) Imaging exocytosis and endocytosis. Curr Opin Neurobiol 6:365–371

    Article  PubMed  Google Scholar 

  • Biederer T, Sara Y, Mozhayeva M, Atasoy D, Liu X, Kavalali ET, Südhof TC (2002) SynCAM, a synaptic adhesion molecule that drives synapse assembly. Science 297: 1525–1531

    Article  PubMed  Google Scholar 

  • DeFazio RA, Heger S, Ojeda SR, Moenter SM (2002) Activation of A-type g-aminobutyric acid receptors excites gonadotropin-releasing hormone neurons. Mol Endocrinol 16:2872–2891

    Article  PubMed  Google Scholar 

  • Donoso AO, López FJ, Negro-Vilar A (1990) Glutamate receptors of the non-N-methyl-D-aspartic acid type mediate the increase in luteinizing hormone releasing hormone release by excitatory amino acid in vitro. Endocrinology 126: 414–420

    PubMed  Google Scholar 

  • Dziedzic B, Prevot V, Lomniczi A, Jung H, Cornea A, Ojeda SR (2003) Neuron-to-glia signaling mediated by excitatory amino acid receptors regulates erbB receptor function in astroglial cells of the neuroendocrine brain. J Neurosci 23: 915–926

    PubMed  Google Scholar 

  • Eyigor O, Jennes L (1997) Expression of glutamate receptor subunit mRNAs in gonadotropin-releasing hormone neurons during the sexual maturation of the female rat. Neuroendocrinology 66: 122–129

    PubMed  Google Scholar 

  • Freemont PS (2000) Ubiquitination: RING for destruction? Curr Biol 10: R84–R87

    Article  PubMed  Google Scholar 

  • Gomyo H, Arai Y, Tanigami A, Murakami Y, Hattori M, Hosoda F, Arai K, Aikawa Y, Tsuda H, Hirohashi S, Asakawa S, Shimizu N, Soeda E, Sakaki Y, Ohki M (1999) A 2-Mb sequence-ready contig map and a novel immunoglobulin superfamily gene IGSF4 in the LOH region of chromosome 11q23.2. Genomics 62: 139–146

    Article  PubMed  Google Scholar 

  • Gore AC (2001) Gonadotropin-releasing hormone neurons. NMDA receptors, and their regulation by steroid hormones across the reproductive life cycle. Brain Res Rev 37: 235–248

    Article  PubMed  Google Scholar 

  • Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nature Biotechnol 17: 994–999

    Article  Google Scholar 

  • Hackel PO, Zwick E, Prenzel N, Ullrich A (1999) Epidermal growth factor receptors: critical mediators of multiple receptor pathways. Curr Opin Cell Biol 11: 184–189

    Article  PubMed  Google Scholar 

  • Harvey RP (1996) NK-2 homeobox genes and heart development. Dev Biol 178: 203–216

    Article  PubMed  Google Scholar 

  • Huttenlocher PR (1984) Synapse elimination and plasticity in developing human cerebral cortex. Am J Ment Defic 88:488–496

    PubMed  Google Scholar 

  • Ideker T, Thorsson V, Ranish JA, Christmas R, Buhler J, Eng JK, Bumgarner R, Goodlett DR, Aebersold R, Hood L (2001) Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science 292: 929–934

    Article  PubMed  Google Scholar 

  • Jung H, Carmel P, Schwartz MS, Witkin JW, Bentele KHP, Westphal M, Piatt JH, Costa ME, Cornea A, Ma YJ, Ojeda SR (1999) Some hypothalamic hamartomas contain transforming growth factor alpha, a puberty-inducing growth factor, but not luteinizing hormone-releasing hormone neurons. J Clin Endocrinol Metab 84:4695–4701

    Article  PubMed  Google Scholar 

  • Keen KL, Burich AJ, Mitsushima D, Kasuya E, Terasawa E (1999) Effects of pulsatile infusion of the GABAA receptor blocker bicuculline on the onset of puberty in female rhesus monkeys. Endocrinology 140: 5257–5266

    Article  PubMed  Google Scholar 

  • Kozlowski GP, Coates PW (1985) Ependymoneuronal specializations between LHRH fibers and cells of the cerebroventricular system. Cell Tissue Res 242: 301–311

    Article  PubMed  Google Scholar 

  • Kuramochi M, Fukuhara H, Nobukuni T, Kanbe T, Maruyama T, Ghosh HP, Pletcher M, Isomura M, Onizuka M, Kitamura T, Sekiya T, Reeves RH, Murakami Y (2001) TSLC1 is a tumor-suppressor gene in human non-small-cell lung cancer. Nature Genet 27:427–430

    Article  PubMed  Google Scholar 

  • Lagrange AH, Ronnekleiv OK, Kelly MJ (1995) Estradiol-17b and m-opioid peptides rapidly hyperpolarize GnRH neurons: A cellular mechanism of negative feedback? Endocrinology 136: 2341–2344

    Article  PubMed  Google Scholar 

  • Lazzaro D, Price M, De Felice M, Di Lauro R (1991) The transcription factor TTF-1 is expressed at the onset of thyroid and lung morphogenesis and in restricted regions of the foetal brain. Development 113: 1093–1104

    PubMed  Google Scholar 

  • Lee BJ, Cho GJ, Norgren R, Junier M-P, Hill DF, Tapia V, Costa ME, Ojeda SR (2001) TTF-1, a homeodomain gene required for diencephalic morphogenesis, is postnatally expressed in the neuroendocrine brain in a developmentally regulated and cell-specific fashion. Mol Cell Neurosci 17: 107–126

    Article  PubMed  Google Scholar 

  • Lomniczi A, Ojeda SR (2003) Hypothalamic tumor necrosis factor-a converting enzyme (TACE) activity is involved in the control of female sexual development. Program No 709 7, 2003 Abstract Viewer Washington, DC: Society for Neuroscience, 2003 Online

    Google Scholar 

  • Ma YJ, Junier M-P, Costa ME, Ojeda SR (1992) Transforming growth factor alpha (TGFOα) gene expression in the hypothalamus is developmentally regulated and linked to sexual maturation. Neuron 9: 657–670

    Article  PubMed  Google Scholar 

  • Ma YJ, Dissen GA, Merlino G, Coquelin A, Ojeda SR (1994) Overexpression of a human transforming growth factor alpha (TGFα) transgene reveals a dual antagonistic role of TGFot in female sexual development. Endocrinology 135: 1392–1400

    Article  PubMed  Google Scholar 

  • Ma YJ, Berg-von der Emde K, Rage F, Wetsel WC, Ojeda SR (1997) Hypothalamic astrocytes respond to transforming growth factor alpha with secretion of neuroactive substances that stimulate the release of luteinizing hormone-releasing hormone. Endocrinology 138: 19–25

    Article  PubMed  Google Scholar 

  • Ma YJ, Hill DF, Creswick KE, Costa ME, Ojeda SR (1999) Neuregulins signaling via a glial erbB2/erbB4 receptor complex contribute to the neuroendocrine control of mammalian sexual development. J Neurosci 19: 9913–9927

    PubMed  Google Scholar 

  • Matsuhashi S, Noji S, Koyama E, Myokai F, Ohuchi H, Taniguchi S, Hori K (1995) New gene, nel, encoding a M r , 93 K protein with EGF-like repeats is strongly expressed in neural tissues of early stage chick embryos. Dev Dyn 203: 212–222

    PubMed  Google Scholar 

  • Melcangi RC, Galbiati M, Messi E, Piva F, Martini L, Motta M (1995) Type 1 astrocytes influence luteinizing hormone-releasing hormone release from the hypothalamic cell line GTI-1: Is transforming growth factor-b the principle involved? Endocrinology 136: 679–686

    Article  PubMed  Google Scholar 

  • Mitsushima D, Hei DL, Terasawa E (1994) Gamma-aminobutyric acid is an inhibitory neurotransmitter restricting the release of luteinizing hormone-releasing hormone before the onset of puberty. Proc Natl Acad Sci USA 91: 395–399

    PubMed  Google Scholar 

  • Mitsushima D, Marzban F, Luchansky LL, Bruich AJ, Keen KL, Durning M, Golos TG, Terasawa E (1996) Role of glutamic acid decarboxylase in the prepubertal inhibition of the luteinizing hormone releasing hormone release in female rhesus monkeys. J Neurosci 16:2563–2573

    PubMed  Google Scholar 

  • Mungenast AE, Parent A, Chen SS, Goodlett D, Aebersold R, Corfas G, Ojeda SR (2003) The synaptic adhesion molecule SynCAM is associated with ERBB4 dysregulation in the hypothalamus of mice with a delayed onset of puberty. Program No 281 20, 2003 Abstract Viewer Washington, DC: Society for Neuroscience, 2003 Online

    Google Scholar 

  • Ojeda SR, Terasawa E (2002) Neuroendocrine regulation of puberty. In: Pfaff D, Arnold A, Etgen A, Fahrbach, S, Moss R, Rubin R (eds) Hormones, brain and behavior. Vol. 4. Elsevier, New York, pp 589–659

    Google Scholar 

  • Ojeda SR, Urbanski HF (1994) Puberty in the rat. In: Knobil E, Neill JD (eds) The physiology of reproduction. 2nd Edition, Vol. 2. Raven Press, New York, pp 363–409

    Google Scholar 

  • Ojeda SR, Ma YJ, Lee BJ, Prevot V (2000) Glia-to-neuron signaling and the neuroendocrine control of female puberty. Rec Prog Horm Res 55: 197–224

    PubMed  Google Scholar 

  • Ojeda SR, Prevot V, Heger S, Lomniczi A, Dziedzic B, Mungenast A (2003) Glia-to neuron signaling and the neuroendocrine control of female puberty. Ann Med 35: 244–255

    Article  PubMed  Google Scholar 

  • Ottem EN, Godwin JG, Petersen SL (2002) Glutamatergic signaling through the N-methyl-D-aspartate receptor directly activates medial subpopulations of luteinizing hormone-releasing hormone (LHRH) neurons, but does not appear to mediate the effects of estradiol on LHRH gene expression. Endocrinology 143: 4837–4845

    Article  PubMed  Google Scholar 

  • Perera AD, Plant TM (1997) Ultrastructural studies of neuronal correlates of the pubertal reaugmentation of hypothalamic gonadotropin-releasing hormone (GnRh) release in the rhesus monkey (Macaca mulatta). J Comp Neurol 385: 71–82

    Article  PubMed  Google Scholar 

  • Peschon JJ, Slack JL, Reddy P, Stocking KL, Sunnarborg SW, Lee DC, russell WE, Castner BJ, Johnson RS, Fitzner JN, Boyce RW, Nelson N, Koslosky CJ, Wolfson MF, Rauch CT, Cerretti DP, Paxton RJ, March CJ, Black RA (1998) An essential role for ectodomain shedding in mammalian development. Science 282: 1281–1284

    Article  PubMed  Google Scholar 

  • Plant TM (1994) Pubertyin primates. In: Knobil E, Neill J (eds) The physiology of reproduction. 2nd Edition, Vol. 2. Raven Press, New York, pp 453–485

    Google Scholar 

  • Plant TM (2002) Neurophysiology of puberty. J Adolesc Health 31: 185–191

    Article  PubMed  Google Scholar 

  • Plant TM, Gay VL, Marshall GR, Arslan M (1989) Puberty in monkeys is triggeredby chemical stimulation of the hypothalamus. Proc Natl Acad Sci USA 86: 2506–2510

    PubMed  Google Scholar 

  • Prevot V (2002) Glial-neuronal-endothelial interactions are involved in the control of GnRH secretion. J Neuroendocrinol 14: 247–255

    Article  PubMed  Google Scholar 

  • Prevot V, Cornea A, Mungenast A, Smiley G, Ojeda SR (2003) Activation of erbB-1 signaling in tanycytes of the median eminence stimulates transforming growth factor β1 release via prostaglandin E2 production and includes cell plasticity. J Neurosci 23:10622–10632

    PubMed  Google Scholar 

  • Prevot V, Rio C, Cho GJ, Lomniczi A, Heger S, Neville CM, Rosenthal NA, Ojeda SR, Corfas G (2003) Normal female sexual development requires neuregulin-erbB receptor signaling in hypothalamic astrocytes. J Neurosci 23: 230–239

    PubMed  Google Scholar 

  • Price MT, Olney JW, Cicero TJ (1978) Acute elevations of serum luteinizing hormone induced by kainic acid, N-methyl aspartic acid or homocystic acid. Neuroendocrinology 26: 352–358

    PubMed  Google Scholar 

  • Rage F, Hill DF, Sena-Esteves M, Breakefield XO, Coffey RJ, Costa ME, McCann SM, Ojeda SR (1997) Targeting transforming growth factor a expression to discrete loci of the neuroendocrine brain induces female sexual precocity. Proc Natl Acad Sci USA 94: 2735–2740

    Article  PubMed  Google Scholar 

  • Rampazzo A, Pivotto F, Occhi G, Tiso N, Bortoluzzi S, Rowen L, Hood L, Nava A, Danieli GA (2000) Characterization of C14orf4, a novel intronless human gene containing a polyglutamine repeat, mapped to the ARVD1 critical region. Biochem Biophys Res Commun 278: 766–774

    Article  PubMed  Google Scholar 

  • Tao WA, Aebersold R (2003) Advances in quantitative proteomics via stable isotope tagging and mass spectrometry. Curr Opin Biotechnol 14: 110–118

    Article  PubMed  Google Scholar 

  • Terasawa E, Fernandez DL (2001) Neurobiological mechanisms of the onset of puberty in primates. Endocrinol Rev 22: 111–151

    Article  Google Scholar 

  • Urbanski HF, Ojeda SR (1987) Activation of lutenzing hormone-releasing hormone release advances the onset of female puberty. Neuroendocrinology 46:273–275, 1987

    PubMed  Google Scholar 

  • van den Pol AN, Trombley PQ (1993) Glutamate neurons in hypothalamus regulate excitatory transmission. J Neurosci 13: 2829–2836

    PubMed  Google Scholar 

  • Watanabe TK, Katagiri T, Suzuki M, Shimizu F, Fujiwara T, Kanemoto N, Nakamura Y, Hirai Y, Maekawa H, Takahashi E (1996) Cloning and characterization of two novel human cDNAs (NELL1 and NELL2) encoding proteins with six EGF-like repeats. Genomics 38: 273–276

    Article  PubMed  Google Scholar 

  • Weiner RI, Findell PR, Kordon C (1988) Role of classic and peptide neuromediators in the neuroendocrine regulation of LH and prolactin. In: Knobil E Neill JD (eds) The physiology of reproduction. Vol. 1. Raven Press, New York, pp 1235–1281

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ojeda, S.R. et al. (2005). Towards Understanding the Neurobiology of Mammalian Puberty: Genetic, Genomic and Proteomic Approaches. In: Kordon, C., Gaillard, RC., Christen, Y. (eds) Hormones and the Brain. Research and Perspectives in Endocrine Interactions. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26940-1_3

Download citation

  • DOI: https://doi.org/10.1007/3-540-26940-1_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-21355-0

  • Online ISBN: 978-3-540-26940-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics