Skip to main content

Network Approach versus State-space Approach for Strapdown Inertial Kinematic Gravimetry

  • Conference paper
Gravity, Geoid and Space Missions

Part of the book series: International Association of Geodesy Symposia ((IAG SYMPOSIA,volume 129))

Abstract

The extraction of gravity anomalies from airborne strapdown INS gravimetry has been mainly based on state-space approach (SSA), which has many advantages but displays a serious disadvantage, namely, its very limited capacity to handle space correlations (like the rigorous treatment of cross-over points). This paper examines an alternative through the well known geodetic approach, where the INS differential mechanization equations are interpreted as a least-squares network parameter estimation problem. The authors believe that the above approach has some potential advantages that are worth exploring. Mainly, that modelling of the Earth gravity field can be more rigorous than with SSA and that external observation equations can be better exploited.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Colomina, I., Navarro, J., Térmens, A., 1992. Geo-TeX: a general point determination system. International Archives of Photogrammetry and Remote Sensing, Vol. 29-B3, International Society of Photogrammetry and Remote Sensing, pp. 656–664.

    Google Scholar 

  • Colomina, I., Blázquez, M., 2004. A unified approach to static and dynamic modelling in photogrammetry and remote sensing. ISPRS International Archives at Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. 35-Bl, Comm. I, pp. 178–183.

    Google Scholar 

  • Forsberg, R., 1986. Inertial Geodesy in Rough Gravity Field. UCSE Report N.30009, University of Calgary, 1986, 71 pages.

    Google Scholar 

  • Hammada, Y., Schwarz, K.P., 1997. Airborne Gravimetry: Model-based versus Frequency-domain Filtering Approaches. Proc. of the Int. Symp. on Kinematic Systems in Geodesy, Geomatics and Navigation, Banff, Canada, June 3–6, 1997. pp. 581–595.

    Google Scholar 

  • Jekeli, C., 2001. Inertial Navigation Systems with Geodetic Applications. de Gruyter.

    Google Scholar 

  • Kloeden, P.E., Platen, E., 1999. Numerical solution of Stochastic Differential Equations, Springer Verlag, New York, US.

    Google Scholar 

  • Nassar, S., Schwarz, K.P., Noureldin, A., El-Sheimy, N., 2003. Modeling Inertial Sensor Errors using Autoregressive (AR) Models. Proc. ION NTM-2003. Annaheim, USA, January 22–24, 2003. pp. 116–125.

    Google Scholar 

  • Schwarz, K.P., 1985. A Unified Approach to Post-mission Processing of Inertial Data. Bulletin Géodésique Vol. 59, N. 1, pp. 33–54.

    Google Scholar 

  • Schwarz, K.P., Li, Y.C., 1995. What can airborne gravimetry contribute to geoid determination? IAG Symposium 64 “Airborne Gravimetry,” IUGG XXI General Assembly, Boulder, CO, US pp. 143–152.

    Google Scholar 

  • Schwarz, K.P., Wei, M., 1995. Inertial Geodesy and INS/GPS Integration (partial lecture notes for ENGO 623). Department of Geomatics Engineering. University of Calgary.

    Google Scholar 

  • Térmens, A., Colomina, I., 2003. Sobre la correctión de errores sistemáticos en gravimetría aerotransportada. Proceedings of the 5. Geomatic Week, Barcelona, ES.

    Google Scholar 

  • Tomé, P., 2002. Integration of Inertial and Satellite Navigation Systems for Aircraft Attitude Determination. Ph.D. Thesis. Department Applied Mathematics. Faculty of Sciences. University of Oporto.

    Google Scholar 

  • Wei, M., Schwarz, K.P., 1990. A strapdown inertial algorithm using an Earth-fixed cartesian frame. Navigation, Vol. 37, No. 2, pp. 153–167.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Térmens, A., Colomina, I. (2005). Network Approach versus State-space Approach for Strapdown Inertial Kinematic Gravimetry. In: Jekeli, C., Bastos, L., Fernandes, J. (eds) Gravity, Geoid and Space Missions. International Association of Geodesy Symposia, vol 129. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26932-0_19

Download citation

Publish with us

Policies and ethics