Skip to main content

AFM Applications for Contact and Wear Simulation

  • Chapter
Applied Scanning Probe Methods III

20.5 Conclusions

At present, there is a strong trend towards a transition from macro to micro and nanoscale that may give a new insight into the basic problems of tribology, such as the influence of deformation and adhesion mechanisms on friction and wear.

The atomic force microscope provides a unique opportunity to obtain the 3D surface topography at nanoscale, to simulate the contact interaction of rough surfaces, to measure the micro-mechanical properties of materials in the thin surface layers, and to model the elementary acts of wear. AFM can be efficiently used in the development ofmultilevel models of surface roughness and contact simulation based on these models.

There are certain drawbacks of AFM related to the dynamics of probe-to-surface interaction and effects of probe shape and hardness on the test data. These drawbacks can be overcome by using precise quasi-static devices and microtribometers in combination with AFM.

It is clear that progress in engineering will provide a lot of new fields in applications of AFM, but micro- and nanotribology continue to be fascinating and fruitful areas for such applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Binning G, Quate CF, Gerber Ch (1986) Phys Rev Lett 56:930

    Article  Google Scholar 

  2. Bhushan B, Israelachvili JN, Landman U (1995) Nature 374:607

    Article  CAS  Google Scholar 

  3. Bhushan B (1995) (ed) Handbook of micro/nano tribology. CRC Press, New York

    Google Scholar 

  4. Ren N, Lee Si (1993) ASME J Tribology 115:597

    Article  Google Scholar 

  5. Myshkin NK, Petrokovets MI, Chizhik SA (1998) Tribol Int 31:79

    Article  CAS  Google Scholar 

  6. Myshkin NK, Kim Ch, Petrokovets MI (1997) Introduction to tribology. CMG Publishers, Seoul

    Google Scholar 

  7. Myshkin NK, Petrokovets MI, Chizhik SA (2001) In: Bhushan B (ed) Fundamentals of tribology and bridging the gap between the macro-and micro/nanoscales. Kluwer, Dordrecht, p 423

    Google Scholar 

  8. Bennet JM, Dancy JH (1981) Appl Opt 20:1785

    Article  Google Scholar 

  9. Kohno T, Osawa N, Miyamoto K, Musha T (1985) Proc Eng 7:231

    Article  Google Scholar 

  10. Bhushan B, Wyant JC, Meiling J (1988) Wear 122:301

    Article  Google Scholar 

  11. Myshkin NK, Grigoryev AYa, Kholodilov OV (1992) Wear 153:119

    Article  CAS  Google Scholar 

  12. Binnig G, Rohrer H (1982) Helv Physica Acta 55:726

    CAS  Google Scholar 

  13. Sarid D (1991) Scanning force microscopy. Oxford University Press, New York

    Google Scholar 

  14. Greenwood JA, Williamson JBP (1966) Proc Roy Soc A295:300

    Google Scholar 

  15. Johnson KL, Kendall K, Roberts AD (1971) Proc Roy Soc A324:301

    Google Scholar 

  16. Deryagin BV, Muller VM, Toporov YuP (1975) J Colloid Interface Sci 53:314

    Article  Google Scholar 

  17. Fuller KNG, Tabor D (1975) Proc Roy Soc A345:327

    Google Scholar 

  18. Bush AW, Gibson RD, Keogh GR (1976) Wear 40:399

    Article  Google Scholar 

  19. Archard JF (1957) Proc Roy Soc A243:190

    Google Scholar 

  20. Greenwood JA, Tripp JH (1967) ASME J of Appl Mech 34:153

    Google Scholar 

  21. Chang WR, Etsion I, Bogy DB (1988) ASME J Trib 110:50

    Google Scholar 

  22. Deryagin BV, Krotova NA, Smilga VP (1978) Adhesion of solids. Consultant Bureau, New York

    Google Scholar 

  23. Israelachvili JN (1991) Intermolecular and surface forces, 2nd edn. Academic Press, London

    Google Scholar 

  24. Gibson CT, Watson GS, Mapledoram LD, Kondo H, Myhra S (1999) Appl Surf Sci 144–145:618

    Article  Google Scholar 

  25. Israelachvili JN (1992) Surf Sci Rep 14:109

    Article  CAS  Google Scholar 

  26. Myshkin NK, Grigoriev AYa, Dubravin AM, Komkov OYu, Spencer ND, Tosatti M (2004) 14th Int Colloquium Tribology. Esslingen, Germany

    Google Scholar 

  27. Myshkin NK, Kovalev AV, Kovaleva IN, Grigoriev AYa (2004) Proc of 4th Int Tribology Conference. Prague, Czech Republic

    Google Scholar 

  28. Luzinov I, Julthongpiput D, Tsukruk VV (2000) Macromolecules 33:7629

    Article  CAS  Google Scholar 

  29. Tsukruk VV, Luzinov I, Julthongpiput D (1999) Langmuir 15:3029

    Article  CAS  Google Scholar 

  30. Hofer R, Textor M, Spencer ND (2001) Langmuir 17:4014

    CAS  Google Scholar 

  31. Textor M, Ruiz L, Hofer R, Rossi A, Feldman K, Hähner G, Spencer ND (2000) Langmuir 16:3257

    Article  CAS  Google Scholar 

  32. Myshkin NK, Goryacheva IG, Dearnley PA, Grigoriev AYa, Dubravin AM, Komkov OYu, Kovaleva IN (2003) Interfaces in advanced materials IAM’03. Chernogolovka, Russia

    Google Scholar 

  33. Sayles RS, Thomas TR (1978) Nature 271:431

    Article  Google Scholar 

  34. Patir N (1978) Wear 47:263

    Article  Google Scholar 

  35. Hu YZ, Tonder K (1992) Int J Mach Tool Manufact 32:82

    Google Scholar 

  36. Webster MN, Sayles RS (1986) ASME J Trib 108:314

    Article  Google Scholar 

  37. Ren N, Lee SiC (1993) ASME J Trib 115:597

    Google Scholar 

  38. Tian X, Bhushan B (1996) ASME J Trib 118:33

    Google Scholar 

  39. Mate CM, Wu J (2000) In: Tsukruk VV, Wahl K (eds) Microstructure and microtribology of polymer surfaces. ACS Symposium Series 741, p 405

    Google Scholar 

  40. Muller RS (1997) In: Bhushan B (ed) Micro/nanotribology and its applications. Kluwer, Dordrecht, p 579

    Google Scholar 

  41. Bhushan B (1997) (ed) Micro/nanotribology and its applications. Kluwer, Dordrecht

    Google Scholar 

  42. Chen X, Vlassak J (2001) J Mater Res 16:2974

    CAS  Google Scholar 

  43. Tsukruk VV (2001) Adv Mater 13:95

    Article  CAS  Google Scholar 

  44. Bliznyuk VN, Everson MP, Tsukruk VV (1998) J Tribol 120:489

    CAS  Google Scholar 

  45. Gorbunov V, Fuchigami N, Stone M, Grace M, Tsukruk VV (2002) Biomacromolecules 3:106

    Article  CAS  Google Scholar 

  46. Tsukruk VV, Shulha H, Zhai X (2003) Appl Phys Lett 82:907

    Article  CAS  Google Scholar 

  47. Tsukruk VV, Gorbunov VV (2001) Microsc Today 1:8

    Google Scholar 

  48. Kovalev A, Shulha H, Lemieux M, Myshkin N, Tsukruk VV (2004) J Mater Res 19:716

    Article  CAS  Google Scholar 

  49. Shulga H, Kovalev A, Myshkin N, Tsukruk V (2004) Eur Polym J 40:949

    Article  CAS  Google Scholar 

  50. LeMieux M, Shulha H, Kovalev A, Minko S, Tsukruk VV (2004) Polym Mater Sci Eng 90:207

    CAS  Google Scholar 

  51. Oliver W, Pharr G (1992) J Mater Res 7:1564

    CAS  Google Scholar 

  52. Sneddon N (1965) Int J Eng Sci 3:47

    Article  Google Scholar 

  53. Johnson KL (1985) Contact mechanics. Cambridge University Press

    Google Scholar 

  54. Nix WD (1989) Metal Trans 20A:2217

    CAS  Google Scholar 

  55. Pharr GM, Oliver WC (1992) MRS Bull 17:28

    Google Scholar 

  56. Doerner MF, Nix WD (1986) J Mater Res 1:601

    Google Scholar 

  57. Gao H, Chiu CH, Lee J (1992) Int J Solids Struct 29:2471

    Article  Google Scholar 

  58. Mencik J, Munz D, Quandt E, Weppelmann ER, Swain MV (1997) J Mater Res 12:2475

    CAS  Google Scholar 

  59. Tsukruk VV, Gorbunov VV (2002) Probe Microsc 3–4:241

    Article  Google Scholar 

  60. Tsukruk VV, Ahn H, Kim D, Sidorenko A (2002) Appl Phys Lett 80:4825

    Article  CAS  Google Scholar 

  61. Burnham N, Colton RJ (1989) Vac Sci Technol A7:2906

    Article  Google Scholar 

  62. Blank V, Popov M, Lvova N, Gogolinsky K, Reshetov V (1997) J Mat Res 12:3109

    CAS  Google Scholar 

  63. Jiang Z, Lu C-J, Bogy DB, Miyamoto T (1995) Trans ASME J Tribol 117:328

    CAS  Google Scholar 

  64. Martinu L, Raveh A, Boutard D, Houle S, Poitras D, Vella N, Wertheimer MR (1993) Diamond Relat Mater 2:673

    Article  CAS  Google Scholar 

  65. Wei B, Komvopoulos K (1996) Trans ASME J Trib 118:431

    Google Scholar 

  66. Myshkin NK, Goryacheva IG, Kovalev AV, Dearnley PA (2002) Surf Eng 18:381

    Article  CAS  Google Scholar 

  67. Fox V, Jones A, Renevier NM, Teer DG (2000) Surf Coat Technol 125:347

    Article  CAS  Google Scholar 

  68. Yang S, Camino D, Jones A, Teer DG (2000) Surf Coat Technol 124:110

    Article  CAS  Google Scholar 

  69. Bykov V, Gologanov A, Shevyakov V (1998) Appl Phys A 66:499

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Myshkin, N.K., Petrokovets, M.I., Kovalev, A.V. (2006). AFM Applications for Contact and Wear Simulation. In: Bhushan, B., Fuchs, H. (eds) Applied Scanning Probe Methods III. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26910-X_9

Download citation

Publish with us

Policies and ethics